Background: Tramadol is an opioid analgesic often used for pain management after breast cancer surgery. Its analgesic activity is due to the activation of the μ-opioid receptor, encoded by the gene. This study investigated the association of genetic variability in and its regulatory miRNA genes with outcomes of tramadol/paracetamol treatment after breast cancer surgery with axillary lymphadenectomy.
Patients And Methods: The study included 113 breast cancer patients after breast cancer surgery with axillary lymphadenectomy treated with either 75/650 mg or 37.5/325 mg of tramadol with paracetamol for pain relief within the randomized clinical trial KCT 04/2015-DORETAonko/si at the Institute of Oncology Ljubljana. All patients were genotyped for rs1799971 and rs677830, rs1011784, and rs2296616 using competitive allele-specific PCR. The association of genetic factors with acute and chronic pain as well as adverse effects of tramadol treatment was evaluated using logistic regression, Fisher's exact test, and Mann-Whitney test.
Results: The investigated related polymorphisms were not associated with acute pain assessed with the VAS scale within four weeks after surgery (all P > 0.05). Carriers of at least one polymorphic rs1799971 allele had a higher risk of constipation in the first four weeks after surgery compared to non-carriers (OR = 4.5, 95% CI = 1.6-12.64, P = 0.004). Carriers of at least one polymorphic rs677830 allele had a higher risk of constipation after third week of tramadol treatment (OR = 3.11, 95% CI = 1.08-8.89, P = 0.035). Furthermore, carriers of two polymorphic rs1011784 alleles had a higher risk of nausea after 28 days of tramadol treatment (OR = 7.35, 95% CI = 1.27-42.6, P = 0.026), while heterozygotes for rs2296616 allele had a lower risk of nausea after 21 days of tramadol treatment (OR = 0.21, 95% CI = 0.05-0.87, P = 0.031). In carriers of two polymorphic rs2296616 alleles, chronic pain was significantly more common than in carriers of two wild-type alleles (P = 0.004). Carriers of at least one polymorphic rs1011784 allele experienced more neuropathic pain after adjustment for tramadol dose (OR = 2.85, 95% CI = 1.07-7.59, P = 0.036), while carriers of at least one polymorphic rs677830 allele experienced less neuropathic pain compared to carriers of two wild-type alleles (OR = 0.38, 95% CI = 0.15-0.99, P = 0.047).
Conclusions: Genetic variability of and genes coding for miRNAs that could affect expression may be associated with adverse effects of tramadol/paracetamol treatment as well as with chronic and neuropathic pain after breast cancer surgery with axillary lymphadenectomy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10039478 | PMC |
http://dx.doi.org/10.2478/raon-2023-0003 | DOI Listing |
Clin Breast Cancer
December 2024
Department of Oncology, Princess Margaret Hospital, Kowloon West Cluster, Hospital Authority, Hong Kong S.A.R., China. Electronic address:
Cell Signal
January 2025
Department of Breast and Thyroid Surgery, The Qinghai Provincial People's Hospital, Xining 810007, China. Electronic address:
This study utilizes single-cell RNA sequencing data to reveal the transcriptomic characteristics of breast cancer and normal epithelial cells. Nine significant cell populations were identified through stringent quality control and batch effect correction. Further classification of breast cancer epithelial cells based on the PAM50 method and clinical subtypes highlighted significant heterogeneity between triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (NTNBC).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, China. Electronic address:
In the past few years, three protein molecules-USP53, NPY2R, and DCTN1-AS1-have garnered significant attention in scientific research due to their potential implications in tumor development. Mass spectrometry and proteomics techniques were used to analyze the three-dimensional structure of these protein molecules and predict their active sites and functional domains. The effects of USP53, NPY2R and DCTN1-AS1 on biological behavior of tumor cells were studied by constructing gene knockout and overexpression cell models.
View Article and Find Full Text PDFJ Infect Public Health
January 2025
Preventive Medicine and Public Health Research Center, Psychosocial Health Research Institute, Department of Community and Family Medicine, School of Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, P.O Box: 14665-354, Tehran 1449614535, Iran.
Background: During the COVID-19 pandemic, hospitals were overwhelmed with infected patients, leading to a disruption in the delivery of services. Patients with cancer, including breast cancer, rely on timely treatment, as delays can reduce survival rates. In this study, we investigated delays in treatment and the factors contributing to delays in chemotherapy and radiotherapy for these patients.
View Article and Find Full Text PDFBiomaterials
January 2025
Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China. Electronic address:
Multimodal phototheranostics on the basis of single molecular species shows inexhaustible and vigorous vitality, particularly those emit fluorescence in the second near-infrared window (NIR-II), the construction of such exceptional molecules nonetheless retains formidably challenging. In view of the undiversified molecular skeletons and insufficient phototheranostic outputs of previously reported NIR-II fluorophores, herein, electron acceptor engineering based on heteroatom-inserted rigid-planar pyrazinoquinoxaline was manipulated to fabricate aggregation-induced emission (AIE)-featured NIR-II counterparts with donor-acceptor-donor (D-A-D) architecture. Systematical investigations substantiated that one of those synthesized AIE molecules, namely 4TPQ, incorporating a fused thiophene acceptor, synchronously exhibited high molar absorptivity (ε), NIR-II emission, typical AIE tendency, significant reactive oxygen species (ROS) generation, and high photothermal conversion efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!