The Staudinger reaction between a phosphine and an azide, applied to phosphorus azides, has been used for the synthesis of a large variety of dendritic structures, incorporating P=N-P=X moieties (X = mainly S, but also O and N-R). Conjugation of the P=N bond with the P=X bond greatly stabilizes the P=N bond. Highly branched structures such as dendrons, dendrimers, Janus dendrimers, layered dendrimers, surface-block dendrimers, and diverse other dendritic structures incorporating such linkage have been elaborated. Accelerated methods of synthesis of dendrimers are also based on the Staudinger reaction. A versatile reactivity was observed exclusively on the sulfur atom of P=N-P=S linkages, such as alkylation or complexation. Alkylation on S induces a weakening of the strength of the P=S bond, which can be easily cleaved to generate phosphines able to react in Staudinger reactions inside the structure of dendrimers, thus affording highly sophisticated dendritic structures.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cplu.202300064DOI Listing

Publication Analysis

Top Keywords

dendritic structures
16
staudinger reaction
8
structures incorporating
8
p=n bond
8
dendrimers
6
structures
5
chemistry p=n-p=x
4
p=n-p=x x=s
4
x=s linkages
4
linkages synthesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!