Nanotherapeutics, on their path to the target tissues, face numerous physicochemical hindrances that affect their therapeutic efficacy. Physical barriers become more pronounced in pathological tissues, such as solid tumors, where they limit the penetration of nanocarriers into deeper regions, thereby preventing the efficient delivery of drug cargo. To address this challenge, we introduce a novel approach that employs surface acoustic wave (SAW) technology to sonoprint and enhance the delivery of nanoparticles onto and into cell spheroids. Our SAW platform is designed to generate focused and unidirectional acoustic waves for creating vigorous acoustic streaming while promoting Bjerknes forces. The effect of SAW excitation on cell viability, as well as the accumulation and penetration of nanoparticles on human breast cancer (MCF 7) and mouse melanoma (YUMM 1.7) cell spheroids were investigated. The high frequency, low input voltage, and contact-free nature of the proposed SAW system ensured over 92% cell viability for both cell lines after SAW exposure. SAW sonoprinting enhanced the accumulation of 100 nm polystyrene particles on the periphery of the spheroids to near four-fold, while the penetration of nanoparticles into the core regions of the spheroids was improved up to three times. To demonstrate the effectiveness of our SAW platform on the efficacy of nanotherapeutics, the platform was used to deliver nanoliposomes encapsulated with the anti-cancer metal compound copper diethyldithiocarbamate (CuET) to MCF 7 and YUMM 1.7 cell spheroids. A three-fold increase in the cytotoxic activity of the drug was observed in spheroids under the effect of SAW, compared to controls. The capacity of SAW-based devices to be manufactured as minuscule wearable patches can offer highly controllable, localized, and continuous acoustic waves to enhance drug delivery efficiency to target tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2lc00854h | DOI Listing |
J Esthet Restor Dent
January 2025
Operative Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt.
Objective: To investigate the effect of cervical margin relocation with four different injectable restorative materials on the fracture resistance of molars receiving mesio-occluso-distal CAD/CAM nanoceramic onlay restorations.
Materials And Methods: One hundred and five sound mandibular molars received a standardized mesio-occluso-distal onlay preparation, with cervical margins located 2 mm apical to the cemento-enamel junction. The molars were randomly allocated into five groups (n = 21) according to the cervical relocating materials used: Group I had no cervical margin relocation; Group II used a highly viscous glass ionomer; Group III used a highly-filled injectable resin composite; Group IV used a resin-modified glass ionomer; and Group V used a bioactive ionic resin.
Biopolymers
March 2025
Centro de Investigación en Química Aplicada, Saltillo, Coahuila, Mexico.
Exploring new ecological and simultaneous processes to modify wood fibers (WF) by-products is a required pathway toward circular economy and sustainability. Thus, plasma-activated water (PAW) and ultrasound (U) were employed as alternative methods to modify WF in a continuous process. Such treatments promoted the etching and cavities on the WF surface that destabilized the hydrogen bonds of the hemicellulose and lignin molecules, increasing the cellulose fraction.
View Article and Find Full Text PDFEur Arch Otorhinolaryngol
January 2025
Audio-vestibular Medicine unit, department of Ear, Nose and throat, Faculty of Medicine, Assiut University, Assiut, Egypt.
Background: Subjective tinnitus is characterized by perception of sound in the absence of any external or internal acoustic stimuli. Many approaches have been developed over the years to treat tinnitus (medical and nonmedical). However, no consensus has been reached on the optimal therapeutic approach.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electronics and Communication Engineering, Sri Ramakrishna Institute of Technology, Coimbatore, Tamilnadu, India, 641010.
The global spread of COVID-19, particularly through cough symptoms, necessitates efficient diagnostic tools. COVID-19 patients exhibit unique cough sound patterns distinguishable from other respiratory conditions. This study proposes an advanced framework to detect and predict COVID-19 using deep learning from cough audio signals.
View Article and Find Full Text PDFLearn Mem
January 2025
Department of Psychology, University of California, Los Angeles, Los Angeles, California 90095, USA
Early life trauma has been shown to facilitate habitual behavior, which may predispose individuals toward perpetuating maladaptive behaviors. However, previous investigations did not account for other traumatic childhood experiences like racial/ethnic discrimination exposure, nor have they examined the interaction of trauma and habits on real-world adverse outcomes. To examine these effects, we recruited 96 young adults (20.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!