Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a neuropsychiatric disease with variable clinical manifestations caused by NMDAR autoantibody. The underlying molecular underpinnings of this disease are rarely characterized on a genomic scale. Anti-NMDAR encephalitis mainly affects the hippocampus, however, its effect on gene expression in hippocampal neurons is unclear at present. Here, we construct the active and passive immunization mouse models of anti-NMDAR encephalitis, and use single-nucleus RNA sequencing to investigate the diverse expression profile of neuronal populations isolated from different hippocampal regions. Dramatic changes in cell proportions and differentially expressed genes were observed in excitatory neurons of the dentate gyrus (DG) subregion. In addition, we found that ATP metabolism and biosynthetic regulators related genes in excitatory neurons of DG subregion were significantly affected. Kcnq1ot1 in inhibitory neurons and Meg3 in interneurons also changed. Notably, the latter two molecules exhibited opposite changes in different models. Therefore, the above genes were used as potential targets for further research on the pathological process of anti-NMDAR encephalitis. These data involve various hippocampal neurons, which delineate a framework for understanding the hippocampal neuronal circuit and the potential molecular mechanisms of anti-NMDAR encephalitis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10307523 | PMC |
http://dx.doi.org/10.1111/bpa.13156 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!