AI Article Synopsis

  • Somatic mosaicism of IDH1/2 mutations is linked to Ollier disease, which causes multiple enchondromatosis.
  • A 35-year-old woman with Ollier disease had two distinct brain tumors (one oligodendroglioma and one astrocytoma) found in her frontal lobes during surgery.
  • Pathological analysis and DNA sequencing confirmed the presence of the IDH1 R132H mutation in both tumors and her blood, indicating that different types of gliomas can occur simultaneously in patients with Ollier disease.

Article Abstract

Somatic mosaicism of isocitrate dehydrogenase 1/2 (IDH1/2) mutation is a cause of Ollier disease (OD), characterized by multiple enchondromatosis. A 35-year-old woman who was diagnosed with OD at age 24 underwent resection surgery for multifocal tumors located at the right and left frontal lobes that were discovered incidentally. No apparent spatial connection was observed on preoperative magnetic resonance imaging. Pathological examinations revealed tumor cells with a perinuclear halo in the left frontal lobe tumor, whereas astrocytic tumor cells were observed in the right frontal lobe tumor. Based on positive IDH1 R132H immunostaining and the result of 1p/19q fluorescent in situ hybridization, pathological diagnoses were IDH mutant and 1p/19q-codeleted oligodendroglioma in the right frontal lobe tumor and IDH mutant astrocytoma in the left frontal lobe tumor, respectively. The DNA sequencing revealed IDH1 R132H mutation in the peripheral blood sample and frontal lobe tumors. This case suggested that in patients with OD, astrocytoma and oligodendroglioma can co-occur within the same individual simultaneously, and IDH1 R132H mutation was associated with supratentorial development of gliomas.

Download full-text PDF

Source
http://dx.doi.org/10.1111/neup.12902DOI Listing

Publication Analysis

Top Keywords

frontal lobe
20
idh1 r132h
16
lobe tumor
16
r132h mutation
12
left frontal
12
ollier disease
8
tumor cells
8
idh mutant
8
frontal
6
tumor
6

Similar Publications

Background And Purpose: Asymptomatic carotid stenosis (ACS) is an independent risk factor for ischemic stroke and vascular cognitive impairment, affecting cognitive function across multiple domains. This study aimed to explore differences in static and dynamic intrinsic functional connectivity and temporal dynamics between patients with ACS and those without carotid stenosis.

Methods: We recruited 30 patients with unilateral moderate-to-severe (stenosis ≥ 50%) ACS and 30 demographically-matched healthy controls.

View Article and Find Full Text PDF

Objective: This study examined the relationship between diffusion tensor imaging indicators and brain network characteristics in patients with cerebral small vessel disease (CSVD) with (CSVD + S) and without (CSVD-S) sleep disturbance. We explored the feasibility of using these imaging biomarkers to investigate the pathophysiological mechanisms underlying sleep disturbance in patients with CSVD.

Methods: A total of 146 patients with CSVD and 84 healthy controls were included.

View Article and Find Full Text PDF

Long-term effects of social play on neural and behavioral development remain unclear. We investigated whether just 1 h of juvenile social play could rescue the effects of play deprivation on stress-related behavior and markers of neural plasticity. Syrian hamsters were reared from postnatal days 21-43 in three conditions: peer isolation, peer isolation with daily social play sessions (dyadic play), or group-housed with littermates.

View Article and Find Full Text PDF

Accurate metacognitive judgments about an individual's performance in a mental task require the brain to have access to representations of the quality and difficulty of first-order cognitive processes. However, little is known about how accurate metacognitive judgments are implemented in the brain. Here, we combine brain stimulation with functional neuroimaging to determine the neural and psychological mechanisms underlying the frontopolar cortex's (FPC) role in metacognition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!