Abnormal reward processing is a hallmark of neurodegenerative diseases, most strikingly in frontotemporal dementia. However, the phenotypic repertoire and neuroanatomical substrates of abnormal reward behaviour in these diseases remain incompletely characterized and poorly understood. Here we addressed these issues in a large, intensively phenotyped patient cohort representing all major syndromes of sporadic frontotemporal dementia and Alzheimer's disease. We studied 27 patients with behavioural variant frontotemporal dementia, 58 with primary progressive aphasia (22 semantic variant, 24 non-fluent/agrammatic variant and 12 logopenic) and 34 with typical amnestic Alzheimer's disease, in relation to 42 healthy older individuals. Changes in behavioural responsiveness were assessed for canonical primary rewards (appetite, sweet tooth, sexual activity) and non-primary rewards (music, religion, art, colours), using a semi-structured survey completed by patients' primary caregivers. Changes in more general socio-emotional behaviours were also recorded. We applied multiple correspondence analysis and -means clustering to map relationships between hedonic domains and extract core factors defining aberrant hedonic phenotypes. Neuroanatomical associations were assessed using voxel-based morphometry of brain MRI images across the combined patient cohort. Altered (increased and/or decreased) reward responsiveness was exhibited by most patients in the behavioural and semantic variants of frontotemporal dementia and around two-thirds of patients in other dementia groups, significantly ( < 0.05) more frequently than in healthy controls. While food-directed changes were most prevalent across the patient cohort, behavioural changes directed toward non-primary rewards occurred significantly more frequently ( < 0.05) in the behavioural and semantic variants of frontotemporal dementia than in other patient groups. Hedonic behavioural changes across the patient cohort were underpinned by two principal factors: a 'gating' factor determining the emergence of altered reward behaviour and a 'modulatory' factor determining how that behaviour is directed. These factors were expressed jointly in a set of four core, trans-diagnostic and multimodal hedonic phenotypes: 'reward-seeking', 'reward-restricted', 'eating-predominant' and 'control-like'-variably represented across the cohort and associated with more pervasive socio-emotional behavioural abnormalities. The principal gating factor was associated ( < 0.05 after correction for multiple voxel-wise comparisons over the whole brain) with a common profile of grey matter atrophy in anterior cingulate, bilateral temporal poles, right middle frontal and fusiform gyri: the cortical circuitry that mediates behavioural salience and semantic and affective appraisal of sensory stimuli. Our findings define a multi-domain phenotypic architecture for aberrant reward behaviours in major dementias, with novel implications for the neurobiological understanding and clinical management of these diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10023829PMC
http://dx.doi.org/10.1093/braincomms/fcad027DOI Listing

Publication Analysis

Top Keywords

frontotemporal dementia
20
patient cohort
16
abnormal reward
12
reward behaviour
12
hedonic phenotypes
12
multimodal hedonic
8
alzheimer's disease
8
behavioural
8
patients behavioural
8
non-primary rewards
8

Similar Publications

Understanding the lifetime risk of dementia can inform public health planning and improve patient engagement in prevention. Using data from a community-based, prospective cohort study (n = 15,043; 26.9% Black race, 55.

View Article and Find Full Text PDF

Neuronal pentraxin 2 (NP2) plays a significant role in synaptic plasticity, neuronal survival, and excitatory synapse regulation. Emerging research suggests that NP2 is implicated in the pathogenesis of various neurological disorders, including neurodegenerative diseases, neuropsychiatric disorders, and neuropathies. This literature review extensively analyzes NP2's role in these conditions, thereby highlighting its contributions to synaptic dysfunction, neuroinflammation, and neurotoxic protein aggregation.

View Article and Find Full Text PDF

Familial frontotemporal dementia (fFTD) is an autosomal dominant heritable form of FTD, onsetting in mid-life, characterized by behavioral and personality changes. Children of an affected parent are at 50% risk of inheriting the relevant fFTD gene variant and developing FTD. Genetic testing means a growing group of people are aware of or considering learning their risk status.

View Article and Find Full Text PDF

Molecular biomarkers of glial activation and injury in epilepsy.

Drug Discov Today

January 2025

Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, ME4 4TB, UK; Faculty of Medicine, Tbilisi State University, Tbilisi 0179, Georgia. Electronic address:

Increasing evidence from fluid biopsies suggests activation and injury of glial cells in epilepsy. The prevalence of clinical and subclinical seizures in neurodegenerative conditions such as Alzheimer's disease, frontotemporal dementia, and others merits review and comparison of the effects of seizures on glial markers in epilepsy and neurodegenerative diseases with concomitant seizures. Herein, we revisit preclinical and clinical reports of alterations in glial proteins in cerebrospinal fluid and blood associated with various types of epilepsy.

View Article and Find Full Text PDF

Preliminary Evidence for Perturbation-Based tACS-EEG Biomarkers of Gamma Activity in Alzheimer's Disease.

Int J Geriatr Psychiatry

January 2025

Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Background: Alzheimer's disease (AD) is characterized by impaired inhibitory circuitry and GABAergic dysfunction, which is associated with reduced fast brain oscillations in the gamma band (γ, 30-90 Hz) in several animal models. Investigating such activity in human patients could lead to the identification of novel biomarkers of diagnostic and prognostic value. The current study aimed to test a multimodal "Perturbation-based" transcranial Alternating Current Stimulation-Electroencephalography (tACS)-EEG protocol to detect how responses to tACS in AD patients correlate with patients' clinical phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!