A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Integration of transcriptomics data into agent-based models of solid tumor metastasis. | LitMetric

Recent progress in our understanding of cancer mostly relies on the systematic profiling of patient samples with high-throughput techniques like transcriptomics. With this approach, one can find gene signatures and networks underlying cancer aggressiveness and therapy resistance. However, omics data alone cannot generate insights into the spatiotemporal aspects of tumor progression. Here, multi-level computational modeling is a promising approach that would benefit from protocols to integrate the data generated by the high-throughput profiling of patient samples. We present a computational workflow to integrate transcriptomics data from tumor patients into hybrid, multi-scale cancer models. In the method, we conduct transcriptomics analysis to select key differentially regulated pathways in therapy responders and non-responders and link them to agent-based model parameters. We then determine global and local sensitivity through systematic model simulations that assess the relevance of parameter variations in triggering therapy resistance. We illustrate the methodology with a generated agent-based model accounting for the interplay between tumor and immune cells in a melanoma micrometastasis. The application of the workflow identifies three distinct scenarios of therapy resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10024179PMC
http://dx.doi.org/10.1016/j.csbj.2023.02.014DOI Listing

Publication Analysis

Top Keywords

therapy resistance
12
transcriptomics data
8
profiling patient
8
patient samples
8
agent-based model
8
integration transcriptomics
4
data
4
data agent-based
4
agent-based models
4
models solid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!