Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recent progress in our understanding of cancer mostly relies on the systematic profiling of patient samples with high-throughput techniques like transcriptomics. With this approach, one can find gene signatures and networks underlying cancer aggressiveness and therapy resistance. However, omics data alone cannot generate insights into the spatiotemporal aspects of tumor progression. Here, multi-level computational modeling is a promising approach that would benefit from protocols to integrate the data generated by the high-throughput profiling of patient samples. We present a computational workflow to integrate transcriptomics data from tumor patients into hybrid, multi-scale cancer models. In the method, we conduct transcriptomics analysis to select key differentially regulated pathways in therapy responders and non-responders and link them to agent-based model parameters. We then determine global and local sensitivity through systematic model simulations that assess the relevance of parameter variations in triggering therapy resistance. We illustrate the methodology with a generated agent-based model accounting for the interplay between tumor and immune cells in a melanoma micrometastasis. The application of the workflow identifies three distinct scenarios of therapy resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10024179 | PMC |
http://dx.doi.org/10.1016/j.csbj.2023.02.014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!