Recent advancements in image analysis and interpretation technologies using computer vision techniques have shown potential for novel applications in clinical microbiology laboratories to support task automation aiming for faster and more reliable diagnostics. Deep learning models can be a valuable tool in the screening process, helping technicians spend less time classifying no-growth results and quickly separating the categories of tests that deserve further analysis. In this context, creating datasets with correctly classified images is fundamental for developing and improving such models. Therefore, a dataset of urine test Petri dishes images was collected following a standardized process, with controlled conditions of positioning and lighting. Image acquisition was conducted by applying a hardware chamber equipped with a led lightning source and a smartphone camera with 12 MP resolution. A software application was developed to support image classification and handling. Experienced microbiologists classified the images according to the positive, negative, and uncertain test results. The resulting dataset contains a total of 1500 images and can support the development of deep learning algorithms to classify urine exams according to their microbial growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10024077 | PMC |
http://dx.doi.org/10.1016/j.dib.2023.109034 | DOI Listing |
Comput Methods Programs Biomed
January 2025
Shanghai Maritime University, Shanghai 201306, China. Electronic address:
Background And Objective: Inferring large-scale brain networks from functional magnetic resonance imaging (fMRI) provides more detailed and richer connectivity information, which is critical for gaining insight into brain structure and function and for predicting clinical phenotypes. However, as the number of network nodes increases, most existing methods suffer from the following limitations: (1) Traditional shallow models often struggle to estimate large-scale brain networks. (2) Existing deep graph structure learning models rely on downstream tasks and labels.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan 430079, China.
Identifying phage-host interactions (PHIs) is a crucial step in developing phage therapy, which is the promising solution to addressing the issue of antibiotic resistance in superbugs. However, the lifestyle of phages, which strongly depends on their host for life activities, limits their cultivability, making the study of predicting PHIs time-consuming and labor-intensive for traditional wet lab experiments. Although many deep learning (DL) approaches have been applied to PHIs prediction, most DL methods are predominantly based on sequence information, failing to comprehensively model the intricate relationships within PHIs.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
DP Technology, Beijing, 100080, China.
Powder X-ray diffraction (PXRD) is a prevalent technique in materials characterization. While the analysis of PXRD often requires extensive human manual intervention, and most automated method only achieved at coarse-grained level. The more difficult and important task of fine-grained crystal structure prediction from PXRD remains unaddressed.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
β-secretase (BACE1) is instrumental in amyloid-β (Aβ) production, with overexpression noted in Alzheimer's disease (AD) neuropathology. The interaction of Aβ with the receptor for advanced glycation endproducts (RAGE) facilitates cerebral uptake of Aβ and exacerbates its neurotoxicity and neuroinflammation, further augmenting BACE1 expression. Given the limitations of previous BACE1 inhibition efforts, the study explores reducing BACE1 expression to mitigate AD pathology.
View Article and Find Full Text PDFSci Rep
January 2025
North Carolina School of Science and Mathematics, Durham, NC, 27705, USA.
Mobile Ad Hoc Networks (MANETs) are increasingly replacing conventional communication systems due to their decentralized and dynamic nature. However, their wireless architecture makes them highly vulnerable to flooding attacks, which can disrupt communication, deplete energy resources, and degrade network performance. This study presents a novel hybrid deep learning approach integrating Convolutional Neural Networks (CNN) with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures to effectively detect and mitigate flooding attacks in MANETs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!