Microcrystal Electron Diffraction for Molecular Design of Functional Non-Fullerene Acceptor Structures.

Chem Mater

Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States.

Published: February 2021

Understanding the relationship between molecular structure and solid-state arrangement informs about the design of new organic semiconductor (OSC) materials with improved optoelectronic properties. However, determining their atomic structure remains challenging. Here, we report the lattice organization of two non-fullerene acceptors (NFAs) determined using microcrystal electron diffraction (MicroED) from crystals not traceable by X-ray crystallography. The MicroED structure of o-IDTBR was determined from a powder without crystallization, and a new polymorph of ITIC-Th is identified with the most distorted backbone of any NFA. Electronic structure calculations elucidate the relationships between molecular structures, lattice arrangements, and charge-transport properties for a number of NFA lattices. The high dimensionality of the connectivity of the 3D wire mesh topology is the best for robust charge transport within NFA crystals. However, some examples suffer from uneven electronic coupling. MicroED combined with advanced electronic structure modeling is a powerful new approach for structure determination, exploring polymorphism and guiding the design of new OSCs and NFAs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10024952PMC
http://dx.doi.org/10.1021/acs.chemmater.0c04111DOI Listing

Publication Analysis

Top Keywords

microcrystal electron
8
electron diffraction
8
electronic structure
8
structure
6
diffraction molecular
4
molecular design
4
design functional
4
functional non-fullerene
4
non-fullerene acceptor
4
acceptor structures
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!