Introduction: LPIN1 deficiency is an autosomal recessive form of early childhood recurrent severe rhabdomyolysis. Although not completely lucid yet, LPIN1 has been shown to modulate endosomal-related pro-inflammatory responses via peroxisome proliferator-activated receptor α (PPARα) and PPARγ coactivator 1α (PGC-1α). Treatment with anti-inflammatory agents such as dexamethasone has been proposed to improve the outcome.
Case: We report a male toddler with recurrent episodes of complicated rhabdomyolysis, requiring prolonged intensive care unit admissions. Whole exome sequencing revealed a common homozygous 1.7 kb intragenic deletion in . Despite optimal metabolic cares, the patient presented with an extremely high CK level where he benefited from intravenous dexamethasone (0.6 mg/Kg/day) for a period of 6 days.
Results: Dexamethasone administration shortened the course of active rhabdomyolysis, intensive care admission and rehabilitation. It also prevented rhabdomyolysis-related complications such as kidney injury and compartment syndrome.
Conclusion: Our patient showed a favorable response to parenteral dexamethasone, in addition to hyperhydration with IV fluids, sufficient calorie intake, and restricted dietary fat. The improvement with corticosteroids suggests an uncontrolled inflammatory response as the pathophysiology of LPIN1 deficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10024045 | PMC |
http://dx.doi.org/10.1016/j.ymgmr.2023.100961 | DOI Listing |
Theranostics
September 2024
Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China.
Enhancing white adipose tissue (WAT) browning combats obesity. The RIIβ subunit of cAMP-dependent protein kinase (PKA) is primarily expressed in the brain and adipose tissue. Deletion of the hypothalamic RIIβ gene centrally induces WAT browning, yet the peripheral mechanisms mediating this process remain unexplored.
View Article and Find Full Text PDFTransl Res
April 2024
Department of Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China. Electronic address:
Diabetic lipo-toxicity is a fundamental pathophysiologic mechanism in DM and is now increasingly recognized a key determinant of DKD. Targeting lipid metabolic disorders is an important therapeutic strategy for the treatment of DM and its complications, including DKD. This study aimed to explore the molecular mechanism of lipid metabolic regulation in kidney, especially renal PTECs, and elucidate the role of lipid metabolic related molecule lipin-1 in diabetic lipid-related kidney damage.
View Article and Find Full Text PDFBiomed Pharmacother
July 2023
Université Paris Cité, INSERM, CNRS, Institut Necker Enfants Malades, F-75015 Paris, France; Centre de référence des maladies héréditaires du métabolisme, Hôpital Universitaire Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Institut Imagine, Filière G2M, MetabERN, F-75015 Paris, France. Electronic address:
Background: Lipin-1 deficiency is a life-threatening disease that causes severe rhabdomyolysis (RM) and chronic symptoms associated with oxidative stress. In the absence of treatment, Hydroxychloroquine sulfate (HCQ) was administered to patients off label use on a compassionate basis in order to improve their physical conditions.
Methods: Eleven patients with LPIN1 mutations were treated with HCQ.
Mol Genet Metab Rep
June 2023
Division of Biochemical Genetics, Department of Pediatrics, University of British Columbia, BC Children's Hospital, Vancouver V6H 3N1, BC, Canada.
Introduction: LPIN1 deficiency is an autosomal recessive form of early childhood recurrent severe rhabdomyolysis. Although not completely lucid yet, LPIN1 has been shown to modulate endosomal-related pro-inflammatory responses via peroxisome proliferator-activated receptor α (PPARα) and PPARγ coactivator 1α (PGC-1α). Treatment with anti-inflammatory agents such as dexamethasone has been proposed to improve the outcome.
View Article and Find Full Text PDFJ Physiol
March 2023
Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH, USA.
Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder caused by dystrophin mutations, leading to the loss of sarcolemmal integrity, and resulting in progressive myofibre necrosis and impaired muscle function. Our previous studies suggest that lipin1 is important for skeletal muscle regeneration and myofibre integrity. Additionally, we discovered that mRNA expression levels of lipin1 were significantly reduced in skeletal muscle of DMD patients and the mdx mouse model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!