A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

AgMYB5, an MYB transcription factor from celery, enhanced β-carotene synthesis and promoted drought tolerance in transgenic Arabidopsis. | LitMetric

Background: Water shortage caused by global warming seriously affects the yield and quality of vegetable crops. β-carotene, the lipid-soluble natural product with important pharmacological value, is abundant in celery. Transcription factor MYB family extensively disperses in plants and plays regulatory roles in carotenoid metabolism and water scarcity response.

Results: Here, the AgMYB5 gene encoding 196 amino acids was amplified from celery cv. 'Jinnanshiqin'. In celery, the expression of AgMYB5 exhibited transactivation activity, tissue specificity, and drought-condition responsiveness. Further analysis proved that ectopic expression of AgMYB5 increased β-carotene content and promoted drought tolerance in transgenic Arabidopsis thaliana. Moreover, AgMYB5 expression promoted β-carotene biosynthesis by triggering the expression of AtCRTISO and AtLCYB, which in turn increased antioxidant enzyme activities, and led to the decreased contents of HO and MDA, and the inhibition of O generation. Meanwhile, β-carotene accumulation promoted endogenous ABA biosynthesis of transgenic Arabidopsis, which resulted in ABA-induced stomatal closing and delayed water loss. In addition, ectopic expression of AgMYB5 increased expression levels of AtERD1, AtP5CS1, AtRD22, and AtRD29.

Conclusions: The findings indicated that AgMYB5 up-regulated β-carotene biosynthesis and drought tolerance of Arabidopsis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10029358PMC
http://dx.doi.org/10.1186/s12870-023-04157-3DOI Listing

Publication Analysis

Top Keywords

drought tolerance
12
transgenic arabidopsis
12
expression agmyb5
12
transcription factor
8
promoted drought
8
tolerance transgenic
8
ectopic expression
8
agmyb5 increased
8
β-carotene biosynthesis
8
agmyb5
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!