The surface of the middle ear is composed of the tympanic membrane (TM) and the middle ear mucosa (MEM). A number of diseases and conditions such as otitis media, middle ear cholesteatoma, and perforation of the TM have been reported to cause dysfunction of the middle ear, ultimately leading to high-frequency hearing loss. Despite its importance in repairing the damaged tissues, the stem/progenitor cells of the TM and the MEM epithelia remains largely uncharacterized due, in part, to the lack of an optimal methodology to expand and maintain stem/progenitor cells long-term. Here, we show that suppression of TGF-β signaling in a low Ca condition enables long-term proliferation of p63-positive epithelial stem/progenitor cells of the TM and the MEM while avoiding their malignant transformation. Indeed, our data show that the expanded TM and MEM stem/progenitor cells respond to Ca stimulation and differentiate into the mature epithelial cell lineages marked by cytokeratin (CK) 1/8/18 or Bpifa1, respectively. These results will allow us to expand epithelial stem/progenitor cells of the TM and MEM in quantity for large-scale analyses and will enhance the use of mouse models in developing stem cell-mediated therapeutic strategies for the treatment of middle ear diseases and conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10027825 | PMC |
http://dx.doi.org/10.1038/s41598-023-31246-y | DOI Listing |
Curr Issues Mol Biol
December 2024
Department of Fundamental Pathology, Endocrinology Research Centre, 117036 Moscow, Russia.
Adrenocortical cancer (ACC) is a rare malignant neoplasm originating from the adrenal cortex, presenting limited therapeutic options. An avenue for improving therapeutic efficacy may involve a deeper understanding of the role of adrenocortical stem/progenitor cells in the pathogenesis of this disease. Although existing data suggest stem/progenitor characteristics in certain cell populations within ACC, the challenge remains to identify adrenocortical stem cell markers directly involved in its carcinogenesis.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Key Laboratory of Bioresources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, People's Republic of China.
Introduction: The proliferation of nanoplastics (NPs) has emerged as a significant environmental concern due to their extensive use, raising concerns about potential adverse effects on human health. However, the exact impacts of NPs on the early development of hematopoietic organs remain poorly understood.
Methods: This investigation utilized fluorescence microscopy to observe the effects of various NP concentrations on the caudal vein plexus (CVP) development in zebrafish embryos.
Front Bioeng Biotechnol
December 2024
Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
Introduction: Extensive trauma frequently disrupts endometrial regeneration by diminishing endometrial stem cells/progenitor cells, affecting female fertility. While bone marrow mesenchymal stem cell (BMSC) transplantation has been suggested as an approach to address endometrial injury, it comes with certain limitations. Recent advancements in endometrial epithelial organoids (EEOs) have displayed encouraging potential for endometrial regeneration.
View Article and Find Full Text PDFJ Cell Mol Med
December 2024
Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.
Macrophage efferocytosis (clearance of apoptotic cells) is crucial for tissue homeostasis and wound repair, where macrophages secrete factors that promote resolution of inflammation and regenerative signalling. This study examined the role of efferocytic macrophage-associated CCL2 secretion, its influence on mesenchymal stem/progenitor cell (MSPC) chemotaxis, and in vivo cell recruitment using Ccr2 (KO) mice with disrupted CCL2 receptor signalling in two regenerative models: ossicle implants and ulnar stress fractures. Single cell RNA sequencing and PCR validation indicated that efferocytosis of various apoptotic cells at bone injury sites (osteoblasts, pre-osteoblasts, MSPC) upregulated CCL2.
View Article and Find Full Text PDFCell Stem Cell
December 2024
Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. Electronic address:
Fatty acid oxidation is of uncertain importance in most stem cells. We show by C-palmitate tracing and metabolomic analysis that hematopoietic stem/progenitor cells (HSPCs) engage in long-chain fatty acid oxidation that depends upon carnitine palmitoyltransferase 1a (CPT1a) and hydroxyacyl-CoA dehydrogenase (HADHA) enzymes. CPT1a or HADHA deficiency had little or no effect on HSPCs or hematopoiesis in young adult mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!