A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modelling homeostatic plasticity in the auditory cortex results in neural signatures of tinnitus. | LitMetric

Modelling homeostatic plasticity in the auditory cortex results in neural signatures of tinnitus.

Neuroimage

Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht, the Netherlands; Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands. Electronic address:

Published: May 2023

Tinnitus is a clinical condition where a sound is perceived without an external sound source. Homeostatic plasticity (HSP), serving to increase neural activity as compensation for the reduced input to the auditory pathway after hearing loss, has been proposed as a mechanism underlying tinnitus. In support, animal models of tinnitus show evidence of increased neural activity after hearing loss, including increased spontaneous and sound-driven firing rate, as well as increased neural noise throughout the auditory processing pathway. Bridging these findings to human tinnitus, however, has proven to be challenging. Here we implement hearing loss-induced HSP in a Wilson-Cowan Cortical Model of the auditory cortex to predict how homeostatic principles operating at the microscale translate to the meso- to macroscale accessible through human neuroimaging. We observed HSP-induced response changes in the model that were previously proposed as neural signatures of tinnitus, but that have also been reported as correlates of hearing loss and hyperacusis. As expected, HSP increased spontaneous and sound-driven responsiveness in hearing-loss affected frequency channels of the model. We furthermore observed evidence of increased neural noise and the appearance of spatiotemporal modulations in neural activity, which we discuss in light of recent human neuroimaging findings. Our computational model makes quantitative predictions that require experimental validation, and may thereby serve as the basis of future human studies of hearing loss, tinnitus, and hyperacusis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2023.119987DOI Listing

Publication Analysis

Top Keywords

hearing loss
16
neural activity
12
increased neural
12
homeostatic plasticity
8
auditory cortex
8
neural signatures
8
signatures tinnitus
8
evidence increased
8
increased spontaneous
8
spontaneous sound-driven
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!