A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine Learning Prediction Algorithm for In-Hospital Mortality following Body Contouring. | LitMetric

Background: Body contouring is a common procedure, but it is worth attention because of concern for a variety of complications, and even the potential for death. As a result, the purpose of this study was to determine the key predictors following body contouring and create models for the risk of mortality using diverse machine learning (ML) models.

Methods: The National Inpatient Sample database from 2015 to 2017 was queried to identify patients undergoing body contouring. Candidate predictors, such as demographics, comorbidities, personal history, postoperative complications, and operative features, were included. The outcome was in-hospital mortality. Models were compared by area under the curve, accuracy, sensitivity, specificity, positive and negative predictive values, and decision curve analysis.

Results: Overall, 8214 patients undergoing body contouring were identified, among whom 141 (1.72%) died in the hospital. Variable importance plot demonstrated that sepsis was the variable with greatest importance across all ML algorithms, followed by Elixhauser Comorbidity Index, cardiac arrest, and so forth. The naive Bayes model had a higher predictive performance (area under the curve, 0.898; 95% CI, 0.884 to 0.911) among these eight ML models. Similarly, in the decision curve analysis, the naive Bayes model also demonstrated a higher net benefit (ie, the correct classification of in-hospital deaths considering a tradeoff between false-negatives and false-positives) compared with the other seven models across a range of threshold probability values.

Conclusion: The ML models, as indicated by this study, can be used to predict in-hospital death for patients at risk who undergo body contouring.

Download full-text PDF

Source
http://dx.doi.org/10.1097/PRS.0000000000010436DOI Listing

Publication Analysis

Top Keywords

body contouring
24
machine learning
8
in-hospital mortality
8
patients undergoing
8
undergoing body
8
area curve
8
decision curve
8
naive bayes
8
bayes model
8
body
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!