Abiotic stresses have become a major challenge in recent years due to their pervasive nature and shocking impacts on plant growth, development, and quality. MicroRNAs (miRNAs) play a significant role in plant response to different abiotic stresses. Thus, identification of specific abiotic stress-responsive miRNAs holds immense importance in crop breeding programmes to develop cultivars resistant to abiotic stresses. In this study, we developed a machine learning-based computational model for prediction of miRNAs associated with four specific abiotic stresses such as cold, drought, heat and salt. The pseudo K-tuple nucleotide compositional features of Kmer size 1 to 5 were used to represent miRNAs in numeric form. Feature selection strategy was employed to select important features. With the selected feature sets, support vector machine (SVM) achieved the highest cross-validation accuracy in all four abiotic stress conditions. The highest cross-validated prediction accuracies in terms of area under precision-recall curve were found to be 90.15, 90.09, 87.71, and 89.25% for cold, drought, heat and salt respectively. Overall prediction accuracies for the independent dataset were respectively observed 84.57, 80.62, 80.38 and 82.78%, for the abiotic stresses. The SVM was also seen to outperform different deep learning models for prediction of abiotic stress-responsive miRNAs. To implement our method with ease, an online prediction server "ASmiR" has been established at https://iasri-sg.icar.gov.in/asmir/ . The proposed computational model and the developed prediction tool are believed to supplement the existing effort for identification of specific abiotic stress-responsive miRNAs in plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10142-023-01014-2 | DOI Listing |
Metab Brain Dis
December 2024
Department of Basic Science, School of Science and Technology, Babcock University, Ilishan-Remo, Ogun State, Nigeria.
Diabetes Mellitus is a metabolic disorder characterized by high blood glucose levels, causing significant morbidity and mortality rates. This study investigated the antidiabetic, neuroprotective, and antioxidant effects of ethanol extracts of Parkia biglobosa (PB) leaves and seeds in streptozotocin (STZ)-induced diabetic rats. The administration of STZ significantly elevated fasting blood glucose levels (FBGL) to 355-400 mg/mL compared to 111 mg/mL in normal controls, indicating hyperglycemia.
View Article and Find Full Text PDFPlant Cell Rep
December 2024
Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510000, Guangdong, China.
A total of 24 genes of vacuolar H-translocating pyrophosphatases H-PPases (VPP) genes were identified in Saccharum spontaneum AP85-441 and the ScVPP1-overexpressed Arabidopsis plants conferred salt tolerance. The vital role of vacuolar H-translocating pyrophosphatases H-PPases (VPP) genes involved in plants in response to abiotic stresses. However, the understanding of VPP functions in sugarcane remained unclear.
View Article and Find Full Text PDFJMIR Ment Health
December 2024
Faculty of Applied Computer Science, Augsburg University, Augsburg, Germany.
Background: The rise of wearable sensors marks a significant development in the era of affective computing. Their popularity is continuously increasing, and they have the potential to improve our understanding of human stress. A fundamental aspect within this domain is the ability to recognize perceived stress through these unobtrusive devices.
View Article and Find Full Text PDFFree Radic Res
December 2024
Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
Patients with hypoxemia require high-concentration oxygen therapy. However, prolonged exposure to oxygen concentrations 21% higher than physiological concentrations (hyperoxia) may cause oxidative cellular damage. Pulmonary alveolar epithelial cells are major targets for hyperoxia-induced oxidative stress.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Department of Anatomy, College of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia.
Exposure to potassium dichromate (KCrO) is well known for its nephrotoxic effects on humans and animals. This study investigated the protective effects of vitamin C against KCrO-induced nephrotoxicity, focusing on its impact on altered carbohydrate metabolism, mitochondrial dysfunction, and associated molecular mechanisms in the cortical and medullary kidney segments. Male Wistar rats (n = 8) were divided into four groups: Group I received saline, Group II received a single 250 mg/kg body weight (bwt) intraperitoneal (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!