Purpose: To summarize the magnetic resonance imaging manifestations of hepatocellular carcinoma (HCC) with and without progression after stereotactic body radiation therapy (SBRT) and evaluate the treatment effect using the modified Liver Reporting and Data System (LI-RADS).

Methods: Between January 2015 and December 2020, 102 patients with SBRT-treated HCC were included. Tumor size, signal intensity, and enhancement patterns at each follow-up period were analyzed. Three different patterns of enhancement: APHE and wash-out, non-enhancement, and delayed enhancement. For modified LI-RADS, delayed enhancement with no size increase were considered to be a "treatment-specific expected enhancement pattern" for LR-TR non-viable.

Results: Patients were divided into two groups: without (n = 96) and with local progression (n = 6). Among patients without local progression, APHE and wash-out pattern demonstrated conversion to the delayed enhancement (71.9%) and non-enhancement (20.8%) patterns, with decreased signal intensity on T1WI(92.9%) and DWI(99%), increased signal intensity on T1WI (99%), and decreased size. The signal intensity and enhancement patterns stabilized after 6-9 months. Six cases with progression exhibited tumor growth, APHE and wash-out, and increased signal intensity on T2WI/DWI. Based on the modified LI-RADS criteria, 74% and 95% showed LR-TR-nonviable in 3 and 12 months post-SBRT, respectively.

Conclusions: After SBRT, the signal intensity and enhancement patterns of HCCs showed a temporal evolution. Tumor growth, APHE and wash-out, and increased signal intensity on T2WI/DWI indicates tumor progression. Modified LI-RADS criteria showed good performance in evaluating nonviable lesions after SBRT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10167191PMC
http://dx.doi.org/10.1007/s00261-023-03827-yDOI Listing

Publication Analysis

Top Keywords

signal intensity
28
aphe wash-out
16
intensity enhancement
12
enhancement patterns
12
delayed enhancement
12
modified li-rads
12
increased signal
12
hepatocellular carcinoma
8
stereotactic body
8
body radiation
8

Similar Publications

Introduction: Dynamic modulation of grip occurs mainly within the major structures of the brain stem, in parallel with cortical control. This basic, but fundamental level of the brain, is robust to ill-formed feedback and to be useful, it may not require all the perceptual information of feedback we are consciously aware. This makes it viable candidate for using peripheral nerve stimulation (PNS), a form of tactile feedback that conveys intensity and location information of touch well but does not currently reproduce other qualities of natural touch.

View Article and Find Full Text PDF

Background: Drug-induced nephrolithiasis is a recognized complication in clinical practice. The objective of this study is to identify drugs that are significantly associated with an increased risk of inducing nephrolithiasis based on the Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS).

Research Design And Methods: We collected adverse event reports associated with drug-induced nephrolithiasis from the first quarter of 2004 (2004 Q1) to the fourth quarter of 2023 (2023 Q4) in the FAERS database.

View Article and Find Full Text PDF

Zebrafish Dark-Dependent Behavior Requires Phototransduction by the Pineal Gland.

J Pineal Res

November 2024

School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel.

Located dorsally underneath a thin translucent skull in many teleosts, the pineal gland is a photoreceptive organ known as a key element of the circadian clock system. Nevertheless, the presence of additional routes of photoreception presents a challenge in determining its specific roles in regulating photic-related behavior. Here, we show the importance of the pineal gland in mediating a prolonged motor response of zebrafish larvae to sudden darkness, both as a photodetector and as a circadian pacemaker.

View Article and Find Full Text PDF

Circularly Polarized Luminescence in Cellulose-Based Assemblies: Synthesis, Regulation, and Application.

Small

December 2024

State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.

Currently, circularly polarized luminescence (CPL) has drawn wide interest in 3D display, information storage, and optical sensing. However, traditional synthetic paths are often accompanied by low chiral optical intensity and complex processes. Cellulose nanocrystals (CNCs), with the properties of liquid crystals, can spontaneously arrange into the left-handed layered nanofilm, which enables them candidates in the construction of CPL materials.

View Article and Find Full Text PDF

Background: Ustekinumab is a fully human interleukin-12/23 (p40) inhibitor used to treat immune-mediated diseases. However, the limitations of clinical trials and the expanding target population necessitate an update on the ustekinumab-associated adverse events (AEs). We conducted signal mining for ustekinumab-related AEs using the United States Food and Drug Administration Adverse Event Reporting System (FAERS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!