Three Novel Mutations of Microphthalmos Identified in Two Chinese Families.

Phenomics

Department of Ophthalmology and Eye Research Institute, Eye and ENT Hospital of Fudan University, Shanghai, 200031 China.

Published: August 2022

Genetic alterations are a major cause of microphthalmos, while novel-related genes and mutations in microphthalmos have rarely been explored. To identify the underlying genetic defect responsible for microphthalmos eyes in two three-generation Chinese families, we screened 425 genes involved in common inherited non-syndromic eye diseases with next-generation sequencing-based target capture sequencing of the two probands of two three-generation Chinese families diagnosed with microphthalmos. Variants were filtered and analyzed to identify possible disease-causing variants before Sanger sequencing validation. We enrolled two families with microphthalmos (Family 1: microphthalmos with congenital ocular coloboma and Family 2: simple microphthalmos). Two novel heterozygous mutations, Peroxidasin () c.3165C>T (p.Pro1055Pro) and c.2640C>G (p.Arg880Arg), were found in Family 1, and Crystallin Beta B2 () c.481G>A (p.Gly161Arg) was found in Family 2, but none of the mutations were found in the unaffected individuals, who were phenotypically normal. Multiple orthologous sequence alignment (MSA) revealed that the p.Gly161Arg mutation was a deleterious effect mutation. In conclusion, the three novel mutations found in our study extend our current understanding of the genetic basis of microphthalmos and provide early pre-symptomatic diagnosis and emphasize the significance of genetic diagnosis of microphthalmos.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9590552PMC
http://dx.doi.org/10.1007/s43657-022-00053-2DOI Listing

Publication Analysis

Top Keywords

chinese families
12
microphthalmos
10
three novel
8
novel mutations
8
mutations microphthalmos
8
three-generation chinese
8
mutations
5
microphthalmos identified
4
identified chinese
4
families
4

Similar Publications

Identification of novel rodent and shrew orthohepeviruses sheds light on hepatitis E virus evolution.

Zool Res

January 2025

Institute of Preventive Medicine, School of Public Health, Dali University, Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Yunnan Key Laboratory of Zoonotic Disease Cross-border Prevention and Quarantine, Dali, Yunnan 671000, China. E-mail:

The family has seen an explosive expansion in its host range in recent years, yet the evolutionary trajectory of this zoonotic pathogen remains largely unknown. The emergence of rat hepatitis E virus (HEV) has introduced a new public health threat due to its potential for zoonotic transmission. This study investigated 2 464 wild small mammals spanning four animal orders, eight families, 21 genera, and 37 species in Yunnan Province, China.

View Article and Find Full Text PDF

Comparison of autologous hematopoietic cell transplantation, matched sibling donor hematopoietic cell transplantation, and chemotherapy in patients with favorable- and intermediate-risk acute myeloid leukemia.

Front Immunol

January 2025

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.

Introduction: Hematopoietic stem cell transplantation (HSCT) and chemotherapy are considered potentially curative options for post-remission therapy in acute myeloid leukemia (AML). However, the comparative effectiveness of these approaches in favorable- and intermediate-risk AML remains unclear and requires further investigation.

Methods: In this retrospective study, 111 patients diagnosed with de novo favorable- and intermediate-risk AML, categorized according to the ELN 2022 guidelines, were investigated to compare outcomes following autologous HSCT (auto-HSCT), matched sibling donor HSCT (MSD-HSCT), and chemotherapy.

View Article and Find Full Text PDF

Leaf vein, an essential part of leaf architecture, plays significant roles in shaping the proper leaf size. To date, the molecular mechanisms governing leaf development including leaf venation patterning remains poorly understood in birch. Here, we performed the genome-wide identification of homeodomain-like (HD-like) superfamily genes using phylogenetic analysis and revealed the functional role of a potential HD-like gene in leaf growth and development using transgenic technology and transcriptomic sequencing.

View Article and Find Full Text PDF

Detection of inversion with breakpoints in causing MPS VI by whole-genome sequencing: lessons learned and best practices.

Front Genet

January 2025

Genetics and Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Introduction: Mucopolysaccharidosis type VI (MPSVI), an autosomal recessive lysosomal storage disorder caused by pathogenic variants in gene. Usually, whole exome sequencing (WES) can identify these variants, and if WES failed to detect causative variants, whole-genome sequencing (WGS) may be considered to investigate deep intronic variations and structural alterations in patients.

Methods: Whole-exome sequencing (WES) and whole genome sequencing (WGS) were performed in a Chinese family having a boy with suspected diagnosis of MPS with macrocephaly, coarse facial features, broad forehead, thick lips, frontal bossing, craniosynostosis, blue spots, frequent upper respiratory infections, inguinal hernia, and dysostosis multiplex.

View Article and Find Full Text PDF

Introduction: Copine-3 (CPNE3) is a conservative calcium-dependent phospholipid-binding protein belonging to the copines protein family. CPNE3 has been implicated in the development and progression of several diseases, including cancer.

Method: Herein, we investigated the molecular mechanisms through which CPNE3 regulates the migration of lung adenocarcinoma (LUAD) cells in vitro.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!