Herein, we demonstrate video-rate color three-dimensional (3D) volumetric displays using elemental-migration-assisted full-color-tunable upconversion nanoparticles (UCNPs). In the heavily doped NaErF:Tm-based core@multishell UCNPs, erbium migration was observed. By tailoring this migration through adjustment of the intermediate shell thickness between the core and the sensitizer-doped second shell, red-green orthogonal upconversion luminescence (UCL) was achieved. Furthermore, highly efficient red-green-blue orthogonal UCL and full-color tunability were achieved in the UCNPs through a combination of elemental-migration-assisted color tuning and selective photon blocking. Finally, 3D volumetric displays were fabricated using a UCNP-polydimethylsiloxane composite. More specifically, 3D color images were created and motion pictures based on the expansion, rotation, and up/down movement of the displayed images were realized in the display matrix. Overall, our study provides new insights into upconversion color tuning and the achievement of motion pictures in the UCNP-polydimethylsiloxane composite is expected to accelerate the further development of solid-state full-color 3D volumetric displays.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.3c00397DOI Listing

Publication Analysis

Top Keywords

volumetric displays
16
elemental-migration-assisted full-color-tunable
8
full-color-tunable upconversion
8
upconversion nanoparticles
8
three-dimensional volumetric
8
color tuning
8
ucnp-polydimethylsiloxane composite
8
motion pictures
8
upconversion
4
nanoparticles video-rate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!