Artificial Intelligence (AI)-based methods allow for automatic assessment of pain intensity based on continuous monitoring and processing of subtle changes in sensory signals, including facial expression, body movements, and crying frequency. Currently, there is a large and growing need for expanding current AI-based approaches to the assessment of postoperative pain in the neonatal intensive care unit (NICU). In contrast to acute procedural pain in the clinic, the NICU has neonates emerging from postoperative sedation, usually intubated, and with variable energy reserves for manifesting forceful pain responses. Here, we present a novel multi-modal approach designed, developed, and validated for assessment of neonatal postoperative pain in the challenging NICU setting. Our approach includes a robust network capable of efficient reconstruction of missing modalities (e.g., obscured facial expression due to intubation) using an unsupervised spatio-temporal feature learning with a generative model for learning the joint features. Our approach generates the final pain score along with the intensity using an attentional cross-modal feature fusion. Using experimental dataset from postoperative neonates in the NICU, our pain assessment approach achieves superior performance (AUC 0.906, accuracy 0.820) as compared to the state-of-the-art approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10018439PMC
http://dx.doi.org/10.1007/978-3-031-16437-8_72DOI Listing

Publication Analysis

Top Keywords

postoperative pain
12
neonatal postoperative
8
pain
8
facial expression
8
postoperative
5
attentional generative
4
generative multimodal
4
multimodal network
4
network neonatal
4
pain estimation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!