Effects of basilar-membrane lesions on dynamic responses of the middle ear.

Acta Otolaryngol

Division of ENT section, Department of Clinical Science, Intervention and Technology and Department of Otolaryngology Head and Neck & Audiology and Neurotology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.

Published: April 2023

Background: Numerical simulations can reflect the changes in physiological properties caused by various factors in the cochlea.

Aims/objective: To analyze the influence of lesions of the basilar membrane (BM) on the dynamic response of the middle ear.

Method: Based on healthy human ear CT scan images, use PATRAN software to build a three-dimensional finite element model of the human ear, then apply NASTRAN software to conduct analysis of solid-fluid coupled frequency response. The influence of lesions in the BM on the dynamic response of the middle ear is simulated through the method of numerical simulation.

Result: Through comparing experimental data and the frequency-response curve of displacement of BM and stapes, the validity of the model in this paper was verified.

Conclusion: Regarding sclerosis in BM, the most obvious decline of displacement and velocity exists in the range of 800-10,000Hz and 800-2000Hz frequency, respectively. The higher degree of sclerosis, the more obvious decline becomes. The maximal decline of hearing can reach from 6.2 dB to 9.1 dB. Regarding added mass in BM, the most obvious decline of displacement exists in the range of 600-1000Hz frequency, and the maximal decline of hearing can reach 4.0 dB. There is no obvious decline in velocity.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00016489.2023.2187451DOI Listing

Publication Analysis

Top Keywords

obvious decline
16
lesions dynamic
8
middle ear
8
influence lesions
8
dynamic response
8
response middle
8
human ear
8
sclerosis obvious
8
decline displacement
8
exists range
8

Similar Publications

Durable PVA-based hydrogel sponge with cellulose whiskers embedded in the 3D interconnected channels for efficient oil/water separation.

Carbohydr Polym

March 2025

School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China. Electronic address:

Superhydrophilic hydrogel was typically used as the membrane coating on various substrates for oil/water separation. Nevertheless, these coatings may suffer from such limitations as poor adhesion strength and abrasion-resistance. Thus, the facile construction of hydrogel sponge with 3D connecting channels would be an ideal choice.

View Article and Find Full Text PDF

Background: C-type lectin (CTL) plays an important act in parasite adhesion, host's cell invasion and immune escape. Our previous studies showed that recombinant Trichinella spiralis C-type lectin (rTsCTL) mediated larval invasion of enteral mucosal epithelium. The aim of this study was to investigate protective immunity produced by vaccination with rTsCTL and its effect on gut epithelial barrier function in a mouse model.

View Article and Find Full Text PDF

We hypothesized that bighorn sheep ewes with chronic nasal carriage are the source of infection that results in fatal lamb pneumonia. We tested this hypothesis in captive bighorn ewes at two study facilities over a 5-year period, by identifying carrier ewes and then comparing lamb fates in groups that did (exposed pens) or did not (non-exposed pens) include one or more carrier ewes. Most (23 of 30) lambs born in exposed pens, but none of 11 lambs born in non-exposed pens, contracted fatal pneumonia.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease is associated with structural covariance network reconfiguration in cognitively unimpaired adults with type 2 diabetes.

Neuroscience

January 2025

Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 China; Medical Imaging Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008 China; Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing 210008 China; Institute of Brain Science, Nanjing University, Nanjing, China. Electronic address:

Type 2 diabetes (T2D) is often accompanied by non-alcoholic fatty liver disease (NAFLD), both of which are related to brain damage and cognitive impairment. However, cortical structural alteration and its relationship with metabolism and cognition in T2D with NAFLD (T2NAFLD) and without NAFLD (T2noNAFLD) remain unclear. The brain MRI scans, clinical measures and neuropsychological test were evaluated in 50 normal controls (NC), 73 T2noNAFLD, and 58 T2NAFLD.

View Article and Find Full Text PDF

Gold nanoparticles (AuNPs) have been widely used as efficient and environmentally friendly catalysts due to their high specific surface area and abundant active sites. However, AuNP-based catalytic systems face several challenges, including the instability of AuNPs during the reaction, the difficulty in monitoring the process, which can easily result in insufficient reaction due to short reaction time or waste of resources due to long reaction time, as well as issues of catalyst recovery. This study proposes a novel catalyst integrating various functions, such as high stability, the capacity for real-time monitoring of the catalytic process, and rapid recycling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!