Both fetal and tumor tissue microenvironments display immunosuppressive features characterized by the presence of specific immunomodulatory stromal and immune cell populations. Recently, we discovered shared microenvironments between hepatocellular carcinoma (HCC) and fetal tissues and described this phenomenon as an oncofetal ecosystem. This ecosystem includes fetal-like immune (macrophage) and stromal (endothelial) cells within the tumor microenvironment (TME). This discovery highlights reciprocal interactions between fetal-like macrophages and T cells which result in the orchestration of an immunosuppressive TME. Importantly, VEGF-A protein expression by tumor cells and fetal-like macrophages plays an important role in oncofetal reprogramming of the TME in HCCs. Interestingly, recent clinical data indicate that blocking VEGF-A or CTLA4 alongside PD-L1 is effective in treating advanced HCC. Consequently, some immunotherapies may target and rely on oncofetal cells for clinical responsiveness. This understanding provides exciting opportunities to utilize oncofetal niche characteristics as biomarkers of immunotherapy response in HCC and might also have validity for predicting responses to immunotherapy in other cancers. In this review, we explore the immunosuppressive mechanisms and interactions of oncofetal cells in the TME of HCC and their potential implications for immunotherapy response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10212542PMC
http://dx.doi.org/10.1042/BST20220157DOI Listing

Publication Analysis

Top Keywords

immunotherapy response
12
immunosuppressive mechanisms
8
oncofetal reprogramming
8
tumor microenvironment
8
implications immunotherapy
8
fetal-like macrophages
8
oncofetal cells
8
oncofetal
6
cells
5
immunosuppressive
4

Similar Publications

The recent development of modular universal chimeric antigen receptor (CAR) T-cell platforms that use bifunctional adaptor intermediates to redirect engineered T-cell effector function has greatly expanded the capabilities of adoptive T-cell therapy, enabling safer and more comprehensive cancer treatment. However, universal CAR receptor systems rely on unstable transient recognition of tag-coupled intermediates for T-cell activation, and the array of targeting intermediates has been limited to antibodies and small molecules. Addressing these shortcomings, we engineered universal CAR T-cell receptors that can be covalently modified with synthetic biomaterials by accelerated SpyCatcher003-SpyTag003 chemistry for cancer-cell targeting.

View Article and Find Full Text PDF

Purpose: Immune checkpoint inhibitors (ICIs) are now first-line therapy for most patients with recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC), and cetuximab is most often used as subsequent therapy. However, data describing cetuximab efficacy in the post-ICI setting are limited.

Methods: We performed a single-institution retrospective analysis of patients with R/M HNSCC treated with cetuximab, either as monotherapy or in combination with chemotherapy, after receiving an ICI.

View Article and Find Full Text PDF

Most diffuse large B-cell lymphoma (DLBCL) patients treated with immunotherapies such as bispecific antibodies (BsAb) or chimeric antigen receptor (CAR) T cells fail to achieve durable treatment responses, underscoring the need for a deeper understanding of mechanisms that regulate the immune environment and response to treatment. Here, an integrative, multi-omic approach was applied to multiple large independent datasets in order to characterize DLBCL immune environments, and to define their association with tumor cell-intrinsic genomic alterations and outcomes to CD19-directed CAR T-cell and CD20 x CD3 BsAb therapies. This approach effectively segregated DLBCLs into four immune quadrants (IQ) defined by cell-of-origin and immune-related gene set expression scores.

View Article and Find Full Text PDF

Purpose Of Review: Recent research underscores the significant influence of the skin and gut microbiota on melanoma and nonmelanoma skin cancer (NMSC) development and treatment outcomes. This review aims to synthesize current findings on how microbiota modulates immune responses, particularly enhancing the efficacy of immunotherapies such as immune checkpoint inhibitors (ICIs).

Recent Findings: The microbiota's impact on skin cancer is multifaceted, involving immune modulation, inflammation, and metabolic interactions.

View Article and Find Full Text PDF

Neoadjuvant immunotherapy in melanoma: pathological response as a surrogate endpoint?

Curr Opin Oncol

December 2024

Université Libre de Bruxelles, Hôpital Universitaire de Bruxelles, Instiut Jules Bordet, Departement of Medical Oncology.

Purpose Of Review: This review evaluates by analyzing recent studies whether pathological complete response (pCR) can be used as a reliable surrogate marker for overall survival (OS) in melanoma treated with neoadjuvant immunotherapy.

Recent Findings: Trials like Neo-Combi, Neo-Trio and COMBI-Neo show that pCR is crucial for long-term success in targeted therapy for melanoma, while studies like OpACIN-neo and SWOG S1801 demonstrate that immunotherapy can provide durable benefits even with partial responses. Findings from NADINA and the INMC analysis highlight that immunotherapy achieves higher pathologic response rates and improved survival outcomes, offering broader benefits compared to the pCR-dependent outcomes of targeted therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!