Meiotic recombinases RAD51 and DMC1 mediate strand exchange in the repair of DNA double-strand breaks (DSBs) by homologous recombination. This is a landmark event of meiosis that ensures genetic diversity in sexually reproducing organisms. However, the regulatory mechanism of DMC1/RAD51-ssDNA nucleoprotein filaments during homologous recombination in mammals has remained largely elusive. Here, we show that SPIDR (scaffold protein involved in DNA repair) regulates the assembly or stability of RAD51/DMC1 on ssDNA. Knockout of Spidr in male mice causes complete meiotic arrest, accompanied by defects in synapsis and crossover formation, which leads to male infertility. In females, loss of Spidr leads to subfertility; some Spidr-/- oocytes are able to complete meiosis. Notably, fertility is rescued partially by ablation of the DNA damage checkpoint kinase CHK2 in Spidr-/- females but not in males. Thus, our study identifies SPIDR as an essential meiotic recombination factor in homologous recombination in mammals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10164582PMC
http://dx.doi.org/10.1093/nar/gkad154DOI Listing

Publication Analysis

Top Keywords

homologous recombination
16
recombination mammals
8
spidr
5
recombination
5
spidr required
4
homologous
4
required homologous
4
recombination mammalian
4
mammalian meiosis
4
meiosis meiotic
4

Similar Publications

Hotspots of genetic change in Yersinia pestis.

Nat Commun

January 2025

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China.

The relative contributions of mutation rate variation, selection, and recombination in shaping genomic variation in bacterial populations remain poorly understood. Here we analyze 3318 Yersinia pestis genomes, spanning nearly a century and including 2336 newly sequenced strains, to shed light on the patterns of genetic diversity and variation distribution at the population level. We identify 45 genomic regions ("hot regions", HRs) that, although comprising a minor fraction of the genome, are hotbeds of genetic variation.

View Article and Find Full Text PDF

Unraveling the complexity of HRD assessment in ovarian cancer by combining genomic and functional approaches: translational analyses of MITO16-MaNGO-OV-2 trial.

ESMO Open

January 2025

Uro-Gynecologic Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy. Electronic address:

Background: Ovarian cancer (OvC) constitutes significant management challenges primarily due to its late-stage diagnosis and the development of resistance to chemotherapy. The standard treatment regimen typically includes carboplatin and paclitaxel, with the addition of poly (ADP-ribose) polymerase inhibitors for patients with high-grade serous ovarian cancer (HGSOC) harboring BRCA1/2 mutations. However, the variability in treatment responses suggests the need to investigate factors beyond BRCA1/2 mutations, such as DNA repair mechanisms and epigenetic alterations.

View Article and Find Full Text PDF

Translationally controlled tumor protein (TCTP) is a well conserved and ubiquitously expressed multifunctional protein found in many organisms and is involved in many pathophysiological processes like cell proliferation, differentiation, development and cell death. The role of TCTP in anti-apoptosis and cancer metastasis makes it a promising candidate for cancer therapy. Dictyostelium discoideum, a protist, has two isoforms (TCTP1 and TCTP2, now referred to as TPT1 and TPT2) of which we have earlier elucidated TPT1.

View Article and Find Full Text PDF
Article Synopsis
  • Bacteria have various DNA repair mechanisms to keep their genomes intact, but identifying these proteins is tricky due to their similarities.
  • A new search strategy helps identify and analyze DNA repair proteins, particularly those involved in RecA-dependent homologous recombination, revealing common proteins like RecA and SSB across many species.
  • The study finds that some DNA repair proteins are often found alongside immune system components, suggesting a potential link, but no immune system is entirely dependent on a single DNA repair protein, indicating a complex relationship between these systems in bacteria.
View Article and Find Full Text PDF

Bacterial genomes primarily diversify via gain, loss, and rearrangement of genetic material in their flexible accessory genome. Yet the dynamics of accessory genome evolution are very poorly understood, in contrast to the core genome where diversification is readily described by mutations and homologous recombination. Here, we tackle this problem for the case of very closely related genomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!