Regional economic power and local environmental policies have a substantial impact on pollution reduction in urban agglomerations (UAs); however, whether megacities in UAs exert spillover effects of pollution reduction on surrounding cities remains unknown. This study presents a causal analytic framework to evaluate the spillover effects of megacities on regional industrial pollution reduction in three major UAs in China between 2005 and 2016. The interaction between industrial pollution reduction and infrastructure investment indicators was also examined. Results indicated a good fit for spatial spillover of sulfur dioxide reduction (SR) in the Pearl River Delta (PRD) and Yangtze River Delta (YRD) but not in the Beijing-Hebei-Tianjin cluster (JJJ). Spatial spillover of dust reduction (DR) was evident in the PRD and JJJ but not the YRD. Spatial analysis showed that infrastructure investment indicators, at megacity and UA levels, had short-term spillover effects on surrounding cities for DR but not SR. However, spatial spillover effects, at both the city and UA levels, were substantial over the long term. In addition, the results of the spatial-time lag analysis suggest a linear relationship between pollution control-related infrastructure investment indicators and long-term pollution reduction. This study provides new information regarding the spatial spillover effects of megacities on regional industrial pollution reduction in UAs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10015212 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e14047 | DOI Listing |
Nat Commun
December 2024
State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, China.
Heavy metals complexed with organic ligands are among the most critical carcinogens threatening global water safety. The challenge of efficiently and cost-effectively removing and recovering these metals has long eluded existing technologies. Here, we show a strategy of coordinating mediator-based electro-reduction (CMBER) for the single-step recovery of heavy metals from wastewater contaminated with heavy metal-organic complexes.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
Sand and dust storms (SDS) can cause adverse health effects, with the oxidative potential (OP) and environmentally persistent free radicals (EPFRs) inducing oxidative stress. We mapped the OP and EPFRs concentrations at 1735 sites in China during SDS periods using experimental data for 2021-2023 and a random forest model. We examined 855,869 hospitalizations during SDS events for 2015-2022 in Beijing, China.
View Article and Find Full Text PDFNat Commun
December 2024
Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.
The emergence of single-atom catalysts offers exciting prospects for the green production of hydrogen peroxide; however, their optimal local structure and the underlying structure-activity relationships remain unclear. Here we show trace Fe, up to 278 mg/kg and derived from microbial protein, serve as precursors to synthesize a variety of Fe single-atom catalysts containing FeNO (1 ≤ x ≤ 4) moieties through controlled pyrolysis. These moieties resemble the structural features of nonheme Fe-dependent enzymes while being effectively confined on a microbe-derived, electrically conductive carbon support, enabling high-current density electrolysis.
View Article and Find Full Text PDFEnviron Technol
December 2024
School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China.
Ascorbic acid (AA) was used as a reducing agent to improve the Fe(III)-activated peracetic acid (PAA) system for the removal of sulfamethoxazole (SMX) in this work. The efficiency, influencing factors and mechanism of SMX elimination in the AA/Fe(III)/PAA process were studied. The results exhibited that AA facilitated the reduction of Fe(III) to Fe(II) and subsequently improved the activation of PAA and HO.
View Article and Find Full Text PDFIndian J Med Res
November 2024
Department of Laboratory Medicine, Jai Prakash Narayan Apex Trauma Center, All India Institute of Medical Sciences, New Delhi, India.
Background & objectives Surgical site infections (SSIs) are among the most prevalent healthcare-associated infections (HCAIs). They cause significant morbidity, leading to excess health expenditures and increased length of hospital stay. Despite a high population burden, data on post-discharge SSIs is lacking from low-and middle-income countries (LMICs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!