(Griff.) (CD) and (Perr.) (CT) are two mangrove plants of the Sundarbans distributed along the coastal areas of South Asia and South Pacific Africa. Traditionally, these plants are used to treat diabetes, pain, angina, hemorrhage, and ulcer. In this study, we investigated the antioxidative, antihyperglycemic, analgesic, and anti-inflammatory potential of the aerial roots of CD and CT. At first, the antioxidative potential of CD and CT ethanolic extracts were investigated qualitatively and quantitatively by 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical and hydrogen peroxide scavenging assays and by determining total antioxidant capacity. The total phenolic, flavonoid, tannin, and terpenoid contents of CD and CT were also estimated. The extracts' antihyperglycemic, analgesic, and anti-inflammatory potential were evaluated by oral glucose tolerance test, acetic acid-induced writhing test, and formaldehyde-induced paw-edema test, respectively. α-glucosidase and α-amylase enzyme inhibitory activities were also assessed. The CD and CT extracts were also analyzed using GCMS for the presence of phytochemicals. Then, molecular docking was carried out with α-glucosidase, α-amylase, cyclooxygenase-II (COX-II), 3-lipoxygenase (3-LOX) enzymes using the compounds found in GCMS analysis as well as the previously reported compounds from CD and CT. Finally, the pharmacokinetic and toxicological profiles of eight selected compounds were assessed with SwissADME and admetSAR server. In the antioxidative, antihyperglycemic, analgesic, and anti-inflammatory activity tests, CT extract showed a greater potential than CD extract. In addition, CT extract demonstrated higher α-glucosidase enzyme inhibitory activity in comparison to CD extract although CD extract exhibited better α-amylase enzyme inhibitory activity. Molecular docking studies revealed the presence of potentially bioactive compounds in both CD and CT. 2-(2-methylphenyl)-1-phenyl-(z)-1-propene of CD demonstrated good binding affinities for α-glucosidase, COX-II, and 3-LOX. In addition, 5S*,8S*,9S*,10R*,13S*)-18-hydroxy-16-nor-3-oxodolabr-4(18)-en-15-oic acid had high binding interactions for both α-glucosidase and α-amylase while 2',5,5'-tetramethyl-1,1'-biphenyl, 2-methyl-4-(3'-phenylpropyl)piperidine and decandrin C had high binding interactions for both COX-II and 3-LOX. Finally, 5S*,8S*,9S*,10R*,13S*)-18-hydroxy-16-nor-3-oxodolabr-4(18)-en-15-oic acid, decandrin C, 2-(2-methylphenyl)-1-phenyl-(z)-1-propene and 2-methyl-4-(3'-phenylpropyl)piperidine demonstrated better pharmacokinetic and toxicological properties in the ADMET analysis compared to the others. Hence it can be concluded that the present study supports the traditional usage of CD and CT for diabetes and pain and reveals the presence of bioactive phytochemicals in both.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10015254PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e14254DOI Listing

Publication Analysis

Top Keywords

antihyperglycemic analgesic
16
analgesic anti-inflammatory
16
anti-inflammatory potential
12
molecular docking
12
α-glucosidase α-amylase
12
enzyme inhibitory
12
potential ethanolic
8
admet analysis
8
diabetes pain
8
antioxidative antihyperglycemic
8

Similar Publications

PPARγ activation attenuates neonatal CRD-induced visceral pain sensitization and anxiety in male rats by alleviating oxidative stress.

BMC Gastroenterol

January 2025

Department of Anesthesiology, First Affiliated Hospital, Fujian Medical University, No. 20, Cha Zhong Road, Fuzhou, Fujian Province, People's Republic of China.

Background: Visceral pain sensitization and emotional reactions due to irritable bowel syndrome (IBS) occur frequently in the general population. Oxidative stress plays a crucial role in the pathogenesis of IBS. Previous studies have demonstrated that activation of peroxisome proliferator-activated receptor gamma (PPARγ) has analgesic effects.

View Article and Find Full Text PDF

Background: Using an analogue-based drug design approach, a number of novel 2-substituted-1,3-thiazolone derivatives (3-10) have been produced and given permission to proceed for their anti-inflammatory properties. In the present paper, the new thiazole derivatives were designed, synthesized, and tested for their alpha-glucosidase, alpha-amylase, and COX-inhibitory activities. Approving the anti-diabetic activity.

View Article and Find Full Text PDF

[Impacts of curcumin on proliferation, migration and cisplatin resistance of bladder cancer cells by regulating LKB1-AMPK-LC3 signaling pathway].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

National Key Laboratory of Bioreactors, School of Biological Engineering, East China University of Science and Technology, Shanghai 200237, China. *Corresponding author, E-mail:

Article Synopsis
  • The study investigates how curcumin affects bladder cancer cells regarding growth, movement, and resistance to cisplatin (a chemotherapy drug) by targeting a specific signaling pathway (LKB1-AMPK-LC3).
  • Human bladder cancer cells (T24) and their cisplatin-resistant counterparts (T24/DDP) were treated with varying concentrations of curcumin, and various assays measured cell proliferation, migration, autophagy, and apoptosis.
  • Results showed that curcumin, especially when combined with metformin, influences these cellular functions and could reduce drug resistance, affecting the expression of proteins in the targeted signaling pathway.
View Article and Find Full Text PDF

Lipopolysaccharides (LPS) are bacterial mediators of neuroinflammation that have been detected in close association with pathological protein aggregations of Alzheimer's disease. LPS induce the release of cytokines by microglia and mediate the upregulation of inducible nitric oxide synthase (iNOS)-a mechanism also associated with amyloidosis. Curcumin is a recognized natural medicine but has extremely low bioavailability.

View Article and Find Full Text PDF

UW supplementation with AP39 improves liver viability following static cold storage.

Sci Rep

January 2025

Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Static cold storage of donor livers at 4 °C incompletely arrests metabolism, ultimately leading to decreases in ATP levels, oxidative stress, cell death, and organ failure. Hydrogen Sulfide (HS) is an endogenously produced gas, previously demonstrated to reduce oxidative stress, reduce ATP depletion, and protect from ischemia and reperfusion injury. HS is difficult to administer due to its rapid release curve, resulting in cellular death at high concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!