A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Silver Nanoparticles Enhance the Antibacterial Effect of Antibiotic-Loaded Bone Cement. | LitMetric

Purpose The goal of this study was to determine the antibacterial activity of bone cement in polymethyl methacrylate (PMMA) structures with varying amounts of silver nanoparticles (AgNPs) included. Additionally, we aimed to evaluate whether AgNPs affect the biomechanical properties of PMMA cement in our study. Materials and methods Between April 2020 and June 2020, we conducted a series of experiments to demonstrate the antibacterial characteristics by adding silver nanoparticles to PMMA bone cement. PMMA bone cement (Cemex, Tecres Company, Verona, Italy) was used as the base material. Seven different samples were prepared in order to evaluate the amount and presence of AgNPs. Cement samples containing AgNPs and teicoplanin at different concentrations and empty cement (control, without teicoplanin and AgNPs) were placed on Petri plates. The agar diffusion method was used to determine the antibacterial effect (Kirby-Bauer). Results Kirby-Bauer assays demonstrated that AgNPs added to bone cement increased the antimicrobial activity compared to antibiotic-free or only teicoplanin-loaded cement. It was observed that increasing the AgNPs ratio further increased the antimicrobial activity. Conclusion AgNPs in various combinations enhance antimicrobial activity synergistically while maintaining the mechanical strength of bone cement. Increasing the amount of AgNPs results in a significant increase in antimicrobial activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10019937PMC
http://dx.doi.org/10.7759/cureus.34992DOI Listing

Publication Analysis

Top Keywords

bone cement
20
antimicrobial activity
16
silver nanoparticles
12
cement
9
agnps
9
determine antibacterial
8
increased antimicrobial
8
bone
6
activity
5
nanoparticles enhance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!