Traditional treatment of wastewaters is a burden for local governments. Using short rotation coppice willow (SRCW) as vegetal filter has several environmental and economic benefits. Here, we investigated the effect of primary wastewater irrigation on wood structure and composition of the willow cultivar 'SX67' following two years of growth. Compared to unirrigated plants (UI), stem sections of plants irrigated with primary wastewater (WWD) showed an unexpected decrease of hydraulic conductance (K) associated with a decrease in vessel density but not vessel diameter. The majority (86%) of vessels had diameters range groups [20-30[, [30-40[and [40-50[µm and contributed to > 75% of theoretical K, while the group class [50-60[µm (less than 10% of vessels) still accounted for > 20% of total K regardless irrigation treatments. WWD significantly alters the chemical composition of wood with an increase of glucan content by 9 to 16.4% and a decrease of extractives by 35.3 to 36.4% when compared to UI or to plants irrigated with potable water (PW). The fertigation did also increase the proportion of the tension wood which highly correlated with glucan content. In the context of energetic transition and mitigation of climate change, such results are of high interest since WWD effectively permit the phytofiltration of large amounts of organic contaminated effluents without impairing SRCW physiology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10018808 | PMC |
http://dx.doi.org/10.3389/fpls.2023.1087035 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Biotechnology, Graphic Era (Deemed to be University), 248002 Dehradun, India.
Throughout the recent years, water bodies have been significantly contaminated via various industrial and pollution wastes posing threats to the living. To tackle the situation, Lignin-Based Hydrogels have appeared as a material with great potential for wastewater treatment. Biomass-derived polymers for wastewater treatment present a sustainable replacement to plastics based on petroleum owing to its biocompatibility, affordability, eco-friendliness and biodegradability.
View Article and Find Full Text PDFBMC Chem
January 2025
State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
Mn is an essential cation extensively utilized in various industrial processes, including electrolytic manganese production, manganese dioxide manufacturing, and zinc processing. It also poses significant environmental challenges as a primary pollutant in Mn-containing wastewater and hazardous materials. Effective monitoring and control of Mn in these processes are vital for improving resource conversion efficiency and minimizing pollutant production.
View Article and Find Full Text PDFSci Total Environ
January 2025
Coastal and Ocean Management Institute, Xiamen University, Xiamen 361102, China; Department of marine biology, Xiamen Ocean vocational college, Xiamen 361102, China; College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China. Electronic address:
This research on microplastics (MPs) in marine environments, particularly in Bay of Bengal fish, underscores the limited comprehension of their accumulation and potential health and environmental consequences. The study investigated the abundance of MPs in the organs of nine marine fish species from the north Bay of Bengal, assessing their polymeric risks and implications for human health. The average MPs ingested by each individual was 32.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Civil Engineering and Architecture, University of Catania, Viale A. Doria 6, Catania, Italy. Electronic address:
This study investigated the applicability of a protein-like fluorescence sensor for wastewater quality monitoring. Several wastewater matrices, including raw, primary, secondary and tertiary effluents from three different wastewater treatment plants were used. Furthermore, the sensor was tested for the monitoring of quaternary effluent in a pilot scale plant installed downstream of a water reuse facility.
View Article and Find Full Text PDFEnviron Int
January 2025
Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands.
Water reuse is a viable option to address temporal or structural water shortages. However, the ubiquitous presence of chemicals of emerging concern (CECs) in natural systems, especially the aquatic environment, represents a significant obstacle to water reuse and the receiving environment. Therefore, an extensive literature review was performed to identify current water reuse practices at field scale, reported types and levels of CECs and their associated risks for human and environmental health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!