Diploid plant genomes typically contain ~35,000 genes, almost all belonging to highly conserved gene families. Only a small fraction are lineage-specific, which are found in only one or few closely related species. Little is known about how genes arise de novo in plant genomes and how often this occurs; however, they are believed to be important for plants diversification and adaptation. We developed a pipeline to identify lineage-specific genes in , using newly available genome assemblies of wheat, barley, and rye. Applying a set of stringent criteria, we identified 5942 candidate -specific genes (TSGs), of which 2337 were validated as protein-coding genes in wheat. Differential gene expression analyses revealed that stress-induced wheat TSGs are strongly enriched in putative secreted proteins. Some were previously described to be involved in non-host resistance and cold response. Additionally, we show that 1079 TSGs have sequence homology to transposable elements (TEs), ~68% of them deriving from regulatory non-coding regions of retrotransposons. Most importantly, we demonstrate that these TSGs are enriched in transmembrane domains and are among the most highly expressed wheat genes overall. To summarize, we conclude that de novo gene formation is relatively rare and that probably possess ~779 lineage-specific genes per haploid genome. TSGs, which respond to pathogen and environmental stresses, may be interesting candidates for future targeted resistance breeding in . Finally, we propose that non-coding regions of TEs might provide important genetic raw material for the functional innovation of TM domains and the evolution of novel secreted proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10020141 | PMC |
http://dx.doi.org/10.1002/pld3.484 | DOI Listing |
Commun Biol
January 2025
Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA.
Symbioses are major drivers of organismal diversification and phenotypic innovation. However, how long-term symbioses shape whole genome evolution in metazoans is still underexplored. Here, we use a giant clam (Tridacna maxima) genome to demonstrate how symbiosis has left complex signatures in an animal's genome.
View Article and Find Full Text PDFNat Commun
January 2025
Goethe University Frankfurt, Institute for Cardiovascular Physiology, Frankfurt, Germany.
The coordination of chromatin remodeling is essential for DNA accessibility and gene expression control. The highly conserved and ubiquitously expressed SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex plays a central role in cell type- and context-dependent gene expression. Despite the absence of a defined DNA recognition motif, SWI/SNF binds lineage specific enhancers genome-wide where it actively maintains open chromatin state.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2025
Division of Cardiology, Department of Medicine, University of Washington (S.S., S.J., N.S., C.Y.L., L.L., D.A.D.).
HGG Adv
December 2024
Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Clare Hall, University of Cambridge, Cambridge, England. Electronic address:
Single-cell transcriptome data can provide insights into how genetic variation influences biological processes involved in human biology and disease. However, the identification of gene-level associations in distinct cell types faces several challenges, including the limited reference resource from population scale studies, data sparsity in single-cell RNA sequencing, and the complex cell state pattern of expression within individual cell types. Here we develop genetic models of cell type specific and cell state adjusted gene expression in mid-brain neurons in the process of specializing from induced pluripotent stem cells.
View Article and Find Full Text PDFImmunology
December 2024
Division of Molecular Medicine, Bose Institute, Kolkata, India.
The host immune system is adapted in a variety of ways by tumour microenvironment and growing tumour interacts to promote immune escape. One of these adaptations is manipulating the metabolic processes of cells in the tumour microenvironment. The growing tumour aggressively utilise glucose, its primary energy source available in tumour site, and produce lactate by Warburg effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!