COVID-19 has brought about many changes in social dynamics. Stay-at-home orders and disruptions in school teaching can influence bullying behavior in-person and online, both of which leading to negative outcomes in victims. To study cyberbullying specifically, 1 million tweets containing keywords associated with abuse were collected from the beginning of 2019 to the end of 2021 with the Twitter API search endpoint. A natural language processing model pre-trained on a Twitter corpus generated probabilities for the tweets being offensive and hateful. To overcome limitations of sampling, data were also collected using the count endpoint. The fraction of tweets from a given daily sample marked as abusive is multiplied to the number reported by the count endpoint. Once these adjusted counts are assembled, a Bayesian autoregressive Poisson model allows one to study the mean trend and lag functions of the data and how they vary over time. The results reveal strong weekly and yearly seasonality in hateful speech but with slight differences across years that may be attributed to COVID-19.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10016178PMC
http://dx.doi.org/10.1007/s13278-023-01053-4DOI Listing

Publication Analysis

Top Keywords

count endpoint
8
nlp-assisted bayesian
4
bayesian time-series
4
time-series analysis
4
analysis prevalence
4
prevalence twitter
4
twitter cyberbullying
4
cyberbullying covid-19
4
covid-19 pandemic
4
pandemic covid-19
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!