Aptamers are synthetic single-stranded nucleic acid molecules that bind to biochemical targets with high affinity and specificity. The method of systematic evolution of ligands by exponential enrichment (SELEX) is widely used to isolate aptamers from randomized oligonucleotides. Recently, microfluidic technology has been applied to improve the efficiency and reduce the cost in SELEX processes. In this work, we present an approach that exploits surface acoustic waves to improve the affinity selection process in microfluidic SELEX. Acoustic streaming is used to enhance the interactions of the solution-based oligonucleotide molecules with microbead-immobilized target molecules, allowing the identification of high-affinity aptamer candidates in a more efficient manner. For demonstration, a DNA aptamer is isolated within three rounds of selection in 5 h to specifically bind to immunoglobulin E, a representative target protein, with an equilibrium dissociation constant of approximately 22.6 nM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10019509 | PMC |
http://dx.doi.org/10.1007/s10404-022-02548-w | DOI Listing |
J Neurol Surg B Skull Base
February 2025
Department of Neurosurgery, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Türkiye.
The absence of precise landmarks in the middle fossa floor and frequent anatomical variations make it difficult to localize the internal acoustic canal (IAC) during the middle fossa approach (MFA). We aimed to investigate the reliability and utility of the neuronavigation system (NNS) in the MFA and to delineate specific technical considerations regarding NNS during the approach. One-millimeter-thin section computed tomography scans were performed on five formalin-fixed human cadavers (10 sides).
View Article and Find Full Text PDFJ Neural Eng
January 2025
Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
Transcranial ultrasound stimulation (TUS) presents challenges in ultrasound wave transmission through the skull, affecting study outcomes due to aberration and attenuation. While planning strategies incorporating 3D computed tomography (CT) scans help mitigate these issues, they expose participants to radiation, which can raise ethical concerns. A solution involves generating skull masks from participants' anatomical magnetic resonance imaging (MRI).
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemistry, McGill University, Montréal, Québec H3A 0G4, Canada.
Metal powders are crucial precursors for manufacturing surfaces through thermal spraying, cold spraying, and 3D printing methods. However, surface oxidation of these precursors poses a challenge to the coherence of the metallic materials during manufacturing processes. Herein, we introduce a method for surface modification of copper powder with N-heterocyclic carbenes (NHCs) using mechanochemistry to mitigate surface oxidation.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Nanjing University, National Laboratory of Solid State Microstructures & Department of Materials Science and Engineering, Nanjing 210093, China.
Precisely engineered gigahertz surface acoustic wave (SAW) trapping enables diverse and controllable interconnections with various quantum systems, which are crucial to unlocking the full potential of phonons. The topological rainbow based on synthetic dimension presents a promising avenue for facile and precise localization of SAWs. In this study, we successfully developed a monolithic gigahertz SAW topological rainbow by utilizing a nanoscale translational deformation as a synthetic dimension.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli, 140306, India.
Fluoropolymer alone, as an alternative to lead-based piezoelectric materials, has shown multiple challenges to develop useful sensors for solving real-world problems such as photoacoustic, ultrasound pulse echo, and other non-destructive testing. This work demonstrates the fabrication of high frequency and wide bandwidth transducers with fluoropolymer and highly polarizing cubic single crystal Barium titanate (BaTiO) ceramic composite for high resolution in-vivo photo-acoustic and ultrasound imaging. For transducer fabrication, a customized bio-compatible nanocomposite sensor film of PVDF-TrFE (Polyvinylidene fluoride trifluoroethylene)/BaTiO (BTO) is synthesized by drop and dry in heating-cum-electro-poling system for advancing polarization, crystallinity, and higher charge generation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!