The echolocation detection capabilities of a beluga (Delphinapterus leucas) and an Atlantic bottlenose dolphin (Tursiops truncatus) were directly compared in a target detection experiment. Both animals were trained to detect targets in the presence of masking noise. Targets were stainless-steel, water-filled spheres 7.62 and 22.86 cm in diameter. Target ranges of 16.5 and 40 m were used with the 7.62-cm sphere and 80 m with the 22.86-cm sphere. Masking noise with a flat spectrum from 40-160 kHz was projected from a spherical transducer placed 4 or 5 m, depending on the target distance, from the animal hoop station in line with the target. Target detection performance was determined as a function of masking noise level at each target range. The echo-to-noise ratio (Ee/No)max for the beluga at the 75% correct response threshold was approximately 1.0 dB compared to about 10 dB for the dolphin. The differences of each animal's detection performance across the three ranges were consistent with target strength and transmission loss differences. It is speculated that the difference in performance between the two species may be due to differences in critical bandwidth, signal processing capability, or echolocation strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.395192DOI Listing

Publication Analysis

Top Keywords

target detection
12
masking noise
12
detection capabilities
8
capabilities beluga
8
bottlenose dolphin
8
detection performance
8
target
7
detection
5
comparison target
4
beluga bottlenose
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!