Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nanozymes are emerging materials in various fields owing to their advantages over natural enzymes, such as controllable and facile synthesis, tunability in catalytic activities, cost-effectiveness, and high stability under stringent conditions. In this study, the effect of metal salts on the formation and catalytic activity of carbon dots (CDs), a promising nanozyme, is demonstrated. By introducing Mn sources that possess different counter anions, the chemical structure and composition of the CDs produced are affected, thereby influencing their enzymatic activities. The synergistic catalytic effect of the Mn and N-doped CDs (Mn&N-CDs) is induced by effective metal doping in the carbogenic domain and a high proportion of graphitic and pyridinic N. This highly enhanced catalytic effect of Mn&N-CDs allows them to respond sensitively to the interference factors of enzymatic reactions. Consequently, ascorbic acid, which is an essential nutrient for maintaining our health and is a reactive oxygen scavenger, can be successfully monitored using color change by forming oxidized 3,3',5,5'-tetramethylbenzidine with HO and Mn&N-CDs. This study provides a basic understanding of the formation of CDs and how their catalytic properties can be controlled by the addition of different metal sources, thereby providing guidelines for the development of CDs for industrial applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10022490 | PMC |
http://dx.doi.org/10.1039/d3ra01001e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!