Tricyclazole, propiconazole, imidacloprid, and thiamethoxam are commonly used pesticides in paddy fields. It is necessary and practical to remove pesticides from the water environment because the low utilization rate of pesticides will produce residues in the water environment. It is known that there are few studies on the preparation of biochar adsorption pesticides by the walnut shell and few studies on the removal of tricyclazole and propiconazole. Based on this, this paper used the walnut shell as raw material and boric acid as an activator to prepare biochar by the one-step method. The boric acid modified walnut shell biochar (WAB4) with a specific surface area of 640.6 m g, exhibited the high adsorption capacity of all four pesticides (>70%) at pH 3-9. The adsorption capacities of tricyclazole, propiconazole, imidacloprid, and thiamethoxam were 171.67, 112.27, 156.40, and 137.46 mg g, respectively. The adsorption kinetics fitted the pseudo-second-order kinetic model and the adsorption isotherm curves conformed to the Freundlich isotherm model. The adsorption of pesticides by WAB4 was associated with hydrogen bonding, pore filling, hydrophobic effects, and π-π interactions. More significantly, WAB4 has excellent adsorption capacity compared to other adsorbents for real water samples. Finally, walnut shell biochar has no significant acute toxicity to . This work shows that walnut shell-based biochar has a good effect on the removal of pesticides at a wide range of pH and is economical and safe, providing a new idea for the removal of pesticides in water.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10018371 | PMC |
http://dx.doi.org/10.1039/d2ra07684e | DOI Listing |
Int J Biol Macromol
January 2025
Hainan Key Laboratory of Storage & Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute of Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China. Electronic address:
Manufacturing water-stable carboxymethyl cellulose (CMC) films as an alternative to commercial plastics is a promising solution to address plastic pollution. In this study, waste walnut shell (WS) was used as a natural lignocellulosic filler, glycerol as a plasticizer, and citric acid (CA) as a crosslinking agent for preparing high-performance CMC-based bioplastics through a one-pot casting method. When WS content was 12 wt%, the obtained CWGA-12 after optimization exhibited excellent mechanical properties (tensile strength ≈18.
View Article and Find Full Text PDFBioresour Technol
January 2025
Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
Recent advancements in activated carbon production involve molten salt activation using a eutectic mixture of ZnCl-NaCl-KCl. This study explores the production of activated carbon from fruit waste, specifically walnut shells, using a 60:20:20 mol % eutectic mixture. Optimal conditions were identified through response surface methodology, with 400 °C and a salt-to-biomass ratio of 10 g/g, yielding a surface area of 276 m/g.
View Article and Find Full Text PDFWater Res
December 2024
The Ministry of Education Key Laboratory of Northwest Water Resource, Environment and Ecology, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China. Electronic address:
Permanganate (Mn(VII)) is a traditional reagent used for water purification, but it is mild to deal with refractory organic contaminants of emerging concern. There is great interest in combination with effective and low-cost biochar to improve reaction kinetics of Mn(VII). Until recently, it still unclear how biomass composition and carbon structure of biochar influence the Mn(VII) oxidation performance.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Integrated Transformation and Renewable Matter TIMR (UTC/ESCOM), University of Technology of Compiegne- Alliance Sorbonne University, Centre of Research of Royallieu, Rue du docteur Schweitzer, CS 60319, 60203 Compiegne, France. Electronic address:
Extracting The extraction of cellulose and lignin from biomass is essential for the development of sustainable bio-based materials. This study examines the effects of physical pretreatment techniques-ultrasound (US), pulsed electric fields (PEF), and high-voltage electrical discharges (HVED)-on the efficiency of alkali treatment for cellulose and lignin extraction from walnut shells. The primary objective was to enhance extraction yields and improve extract quality while evaluating the effectiveness of these methods.
View Article and Find Full Text PDFJ Imaging
December 2024
College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming 650224, China.
Walnuts possess significant nutritional and economic value. Fast and accurate sorting of shells and kernels will enhance the efficiency of automated production. Therefore, we propose a FastQAFPN-YOLOv8s object detection network to achieve rapid and precise detection of unsorted materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!