Perovskite materials play a significant role in oxygen sensors due to their fascinating electrical and ionic conductivities. The sol-gel technique was employed to prepare various compositions of B-site-deficient Fe-doped SrTiO (iron-doped strontium titanate) or Sr(TiFe) O , where = 0.01, 0.02, and 0.03. The XRD results revealed that the principle crystalline phase of the samples was the cubic perovskite structure. The B-site deficiency improved the ionic and total conductivities of Sr(TiFe) O . A small polaron conduction behavior occurred in the total electrical conductivity. The XPS results showed that the oxygen vacancy value decreased with the rise in the amount of B-site deficiencies. A lower B-site deficiency amount could produce more oxygen vacancies in the lattice but resulted in the ordering of vacancies and then lower ionic conductivity. The aging behavior was caused by the ordering of oxygen vacancies and resulted in a degeneration of electrical features under a long service time. Conversely, augmentation of the B-site deficiency amount inhibited the tendency for the ordering of oxygen vacancies and then promoted the electrical performance under a long usage time. The conduction mechanism of oxygen ions through oxygen vacancies was thoroughly investigated and discussed. The current study presents a feasible approach to ameliorate the physical features of conductors through doping the B-site of the perovskite layer with Fe, which would be a fruitful approach for numerous applications, including oxygen sensors and fuel cells anodes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10015630 | PMC |
http://dx.doi.org/10.1039/d3ra00583f | DOI Listing |
Nanomicro Lett
January 2025
College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, People's Republic of China.
The integration of dual-mesoporous structures, the construction of heterojunctions, and the incorporation of highly concentrated oxygen vacancies are pivotal for advancing metal oxide-based gas sensors. Nonetheless, achieving an optimal design that simultaneously combines mesoporous structures, precise heterojunction modulation, and controlled oxygen vacancies through a one-step process remains challenging. This study proposes an innovative method for fabricating zinc stannate semiconductors featuring dual-mesoporous structures and tunable oxygen vacancies via a direct solution precursor plasma spray technique.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.
We combine atomistic and continuum simulation methods to study the defect chemistry of a model grain boundary in UO. Using atomistic methods, we calculate the formation energies of oxygen interstitials, uranium vacancies, and hole polarons (U ions) across the Σ5(310)[001] symmetric tilt grain boundary. This information is then used as input in a continuum model of point-defect concentrations at the grain boundary and in its vicinity, taking into account electrostatic (space-charge) effects.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
We used density functional theory with a hybrid functional to investigate the structure and properties of [4H] (hydrogarnet) defects in -quartz as well as the reactions of these defects with electron holes and extra hydrogen atoms and ions. The results demonstrate the depassivation mechanisms of hydrogen-passivated silicon vacancies in -quartz, providing a detailed understanding of their stability, electronic properties, and behaviour in different charge states. While fully hydrogen passivated silicon vacancies are electrically inert, the partial removal of hydrogen atoms activates these defects as hole traps, altering the defect states and influencing the electronic properties of the material.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Center for Sustainable Future Technologies @POLITO, Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy.
The electrochemical reduction of CO (CORR) to value-added products has garnered significant interest as a sustainable solution to mitigate CO emissions and harness renewable energy sources. Among CORR products, formic acid/formate (HCOOH/HCOO) is particularly attractive due to its industrial relevance, high energy density, and potential candidate as a liquid hydrogen carrier. This study investigates the influence of the initial oxidation state of tin on CORR performance using nanostructured SnO catalysts.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Inorganic and Organic Chemistry, University Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
In this work, a series of BaMnCuO samples (x: 1, 0.9, 0.8, and 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!