Microglia play an important role in neuroinflammation and neurodegeneration. Here, we report an approach for generating microglia-containing cerebral organoids derived from human pluripotent stem cells involving the supplementation of growth factors (FGF, EGF, heparin) and 10% CO2 culture conditions. Using this platform, Western Pacific Amyotrophic Lateral Sclerosis and Parkinsonism-Dementia Complex (ALS-PDC) cerebral organoids were generated from patient-derived induced pluripotent stem cells (iPSCs). These ALS-PDC-affected organoids had more reactive astrocytes and M1 microglia, and had fewer M2 microglia than their unaffected counterparts, leading to impaired microglia-mediated phagocytosis. RNA-seq analysis of ALS-PDC and control organoids indicated that the most significant changes were microglia- and astrocyte-related genes (IFITM1/2, TGF-β, and GFAP). The most significantly downregulated pathway was type I interferon signaling. Interferon-gamma supplementation increased IFITM expression, enhanced microglia-mediated phagocytosis, and reduced beta-amyloid accumulation in ALS-PDC-affected network. The results demonstrated the feasibility of using microglia-containing organoids for the study of neurodegenerative diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10014280PMC
http://dx.doi.org/10.1016/j.isci.2023.106267DOI Listing

Publication Analysis

Top Keywords

cerebral organoids
12
pluripotent stem
12
stem cells
12
microglia-containing cerebral
8
organoids derived
8
induced pluripotent
8
microglia-mediated phagocytosis
8
organoids
6
derived induced
4
cells study
4

Similar Publications

Neurotoxic effects of citronellol induced by the conversion of kynurenine to 3-hydroxykynurenine.

J Hazard Mater

December 2024

Zebrafish Translational Medical Research Center, Korea University, Ansan, Gyeonggi-do, Republic of Korea; Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea. Electronic address:

Citronellol is widely utilized in consumer products, including cosmetics, fragrances, and household items. However, despite being considered a relatively safe chemical, the health effects and toxicity mechanisms associated with exposure to high concentrations of citronellol, based on product content, remain inadequately understood. Here, we aimed to analyze the neurological effects of citronellol in zebrafish larvae using behavioral and histological analyses and elucidate the mechanisms underlying its neurotoxicity in vivo.

View Article and Find Full Text PDF

During gestation, the choroid plexus (ChP) produces protein-rich cerebrospinal fluid and matures prior to brain development. It is assumed that ChP dysfunction has a profound effect on developmental neuropsychiatric disorders, such as autism spectrum disorder (ASD). However, the mechanisms linking immature ChP to the onset of ASD remain unclear.

View Article and Find Full Text PDF

Beyond consciousness: Ethical, legal, and social issues in human brain organoid research and application.

Eur J Cell Biol

December 2024

Uehiro Division for Applied Ethics, Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan; Centre for Biomedical Ethics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan. Electronic address:

This study aims to provide a comprehensive review of the ethical, legal and social issues in human brain organoid research, with a view to different types of research and applications: in vitro research, transplantation into non-human animals, and biocomputing. Despite the academic and societal attention on the possibility that human brain organoids may be conscious, we have identified diverse issues in human brain organoid research and applications. To guide the complex terrain of human brain organoid research and applications, a multidisciplinary approach that integrates ethical, legal, and social perspectives is essential.

View Article and Find Full Text PDF

Identifying the Pathogenicity of a Novel NPRL3 Missense Mutation Using Personalized Cortical Organoid Model of Focal Cortical Dysplasia.

J Mol Neurosci

December 2024

Department of Neurosurgery, National Children's Medical Center (Shanghai), Children's Hospital of Fudan University, No.399 Wan Yuan Avenue, Minhang District, Shanghai, 201102, China.

Focal cortical dysplasia (FCD) II is a cortical malformation characterized by cortical architectural abnormalities, dysmorphic neurons, with or without balloon cells. Here, we systematically explored the pathophysiological role of the GATOR1 subunit NPRL3 variants including a novel mutation from iPSCs derived from one FCD II patient. Three FCD II children aged 0.

View Article and Find Full Text PDF

Personalized Vascularized Tumor Organoid-on-a-Chip for Tumor Metastasis and Therapeutic Targeting Assessment.

Adv Mater

December 2024

Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, 200032, China.

While tumor organoids have revolutionized cancer research by recapitulating the cellular architecture and behaviors of real tumors in vitro, their lack of functional vasculature hinders their attainment of full physiological capabilities. Current efforts to vascularize organoids are struggling to achieve well-defined vascular networks, mimicking the intricate hierarchy observed in vivo, which restricts the physiological relevance particularly for studying tumor progression and response to therapies targeting the tumor vasculature. An innovative vascularized patient-derived tumor organoids (PDTOs)-on-a-chip with hierarchical, tumor-specific microvasculature is presented, providing a versatile platform to explore tumor-vascular dynamics and antivascular drug efficacy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!