Background: Metagenomic next-generation sequencing (mNGS) is a promising technology that allows unbiased pathogen detection and is increasingly being used for clinical diagnoses. However, its application in urinary tract infection (UTI) is still scarce.

Methods: The medical records of 33 patients with suspected UTI who were admitted to the Second Hospital of Tianjin Medical University from March 2021 to July 2022 and received urine mNGS were retrospectively analyzed. The performance of mNGS and conventional urine culture in diagnosing infection and identifying causative organisms was compared, and the treatment effects were evaluated in terms of changes in urinalyses and urinary symptoms.

Results: In the detection of bacteria and fungi, mNGS detected at least one pathogen in 29 (87.9%) cases, including 19 (57.6%) with positive mNGS but negative culture results and 10 (30.3%) with both mNGS and culture positive results. The remaining 4 (12.1%) patients were negative by both tests. Overall, mNGS performed better than culture (87.9% vs. 30.3%, < 0.001). Within the 10 double-positive patients, mNGS matched culture results exactly in 5 cases, partially in 4 cases, and not at all in 1 case. In addition, mNGS detected a broader pathogen spectrum, detecting 26 species compared to only 5 species found in culture. The most abundant bacteria detected by mNGS was , detected in 9 (27.2%) patients. All anaerobic bacteria, and all mixed pathogens were detected by mNGS. The final clinical diagnosis of UTI was made in 25 cases, and the sensitivity of mNGS was significantly higher than culture (100.0% vs 40.0%; < 0.001) when using the diagnosis as a reference standard; the positive predictive value, negative predictive value and specificity were 86.2%, 100% and 50.0%, respectively. Importantly, targeted antibiotic therapy based on mNGS resulted in significant improvement in urinalyses and urinary symptoms in patients.

Conclusions: mNGS is a technology that has shown clear advantages over culture, particularly in the context of mixed infections and UTIs that are difficult to diagnose and treat. It helps to improve the detection of pathogens, guide changes in treatment strategies, and is an effective complement to urine culture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10020507PMC
http://dx.doi.org/10.3389/fcimb.2023.1119020DOI Listing

Publication Analysis

Top Keywords

mngs
15
mngs detected
12
culture
10
urinary tract
8
tract infection
8
negative culture
8
metagenomic next-generation
8
next-generation sequencing
8
sequencing mngs
8
urine culture
8

Similar Publications

Diagnostic performance of metagenomic next-generation sequencing among hematological malignancy patients with bloodstream infections after antimicrobial therapy.

J Infect

December 2024

Department of Hematology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, 210008, PR China. Electronic address:

Background: Metagenomic next-generation sequencing (mNGS) is an effective method for detecting pathogenic pathogens of bloodstream infection (BSI). However, there is no consensus on whether the use of antibiotics affects the diagnostic performance of mNGS. We conducted a prospective clinical study aiming to evaluate the effect of antimicrobial treatment on mNGS.

View Article and Find Full Text PDF

Metagenomic next-generation sequencing and galactomannan testing for the diagnosis of invasive pulmonary aspergillosis.

Sci Rep

December 2024

Department of Respiratory and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Weiwu Road No. 7, Zhengzhou, 450003, Henan, China.

To evaluate the diagnostic value of metagenomic next-generation sequencing (mNGS) and galactomannan (GM) testing in invasive pulmonary aspergillosis (IPA) and to compare mNGS with other diagnostic approaches (serum/bronchoalveolar lavage fluid (BALF)-GM and conventional microbiological tests (CMTs) including sputum smears and culture, BALF fungal culture, and bronchial brushing). In all, 237 patients were enrolled in this retrospective study, including 120 patients with IPA and 117 with non-IPA pulmonary infections treated at Henan Provincial People's Hospital between June 2021 and February 2024. The diagnostic performance of mNGS was compared to conventional diagnostic methods including serum GM, BALF-GM, sputum smear microscopy, sputum culture, bronchial brushings, and BALF culture.

View Article and Find Full Text PDF

Objectives: Delayed diagnosis of patients with Fever of Unknown Origin has long been a daunting clinical challenge. Onco-mNGS, which can accurately diagnose infectious agents and identify suspected tumor signatures by analyzing host chromosome copy number changes, has been widely used to assist identifying complex etiologies. However, the application of Onco-mNGS to improve FUO etiological screening has never been studied before.

View Article and Find Full Text PDF

Background: Metagenomic next-generation sequencing (mNGS) has emerged as a promising tool in clinical practice due to its unbiased approach to pathogen detection. Its diagnostic performance in pulmonary tuberculosis (PTB), however, remains to be fully evaluated.

Objective: This study aims to systematically review and Meta-analyze the diagnostic accuracy of mNGS in patients with PTB.

View Article and Find Full Text PDF

Yield of clinical metagenomics: insights from real-world practice for tissue infections.

EBioMedicine

December 2024

Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang Key Laboratory of Clinical in Vitro Diagnostic Techniques, Hangzhou, 310003, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, 310003, PR China. Electronic address:

Background: While metagenomic next-generation sequencing (mNGS) has been acknowledged as a valuable diagnostic tool for infections, its clinical validity and impact on patient management when using fresh tissue samples remains uncertain.

Methods: We conducted a retrospective cross-sectional study involving patients who underwent tissue mNGS at a tertiary hospital in China from February 2021 to February 2024, aiming to assess its ability to detect plausible pathogens and its clinical validity and impact.

Findings: A total of 520 mNGS results from 508 patients were analysed, detecting plausible pathogens in 302 (58.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!