Individuals with idiopathic Parkinson's disease (PD) benefit from Rhythmic Auditory Stimulation (RAS) concerning gait impairment recovery. In PD, RAS may help eliciting rhythmic and automatized motor responses, including gait, by bypassing the deteriorated internal "clock" within basal ganglia for automatic and rhythmic motricity. We aimed at exploring the contribution of the cerebellum to this "bypass effect" in response to RAS. To this end, we examined the cerebellum-cerebral connectivity indices using conventional EEG recording to assess whether the cerebellum contributes to RAS-based post-training effects in persons with PD. Fifty PD patients were randomly assigned to an 8-week training program using Gait-Trainer3 with or without RAS. We measured the Functional Gait Assessment, the Unified Parkinson's Disease Rating Scale, the Berg Balance Scale, the Tinetti Falls Efficacy Scale, the 10-meter walking test, the timed up-and-go test, and the gait quality index derived from gait analysis before and after the end of the training. A standard EEG during gait on the GT3 was also recorded and submitted to eLORETA analysis. Particularly, we focused on the time course of the gait-related activities (which were characterized using the maximum amplitude vertex across the gait cycles) within each brain region of interest. These clinical and electrophysiological measures could be used to monitor the improvement in gait performance in standard clinical settings and to develop new rehabilitation protocols focusing on a holistic functional recovery approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10014267 | PMC |
http://dx.doi.org/10.1016/j.dib.2023.109013 | DOI Listing |
Nutrients
January 2025
Department of Cardiology & 65+ Geriatric Outpatient Clinic, Amalia Fleming General Hospital, 14, 25th Martiou Str., 15127 Melissia, Greece.
Sarcopenia, an age-related decline in skeletal muscle mass, strength, and function, is increasingly recognized as a significant condition in the aging population, particularly among those with cardiovascular diseases (CVD). This review provides a comprehensive synthesis of the interplay between sarcopenia and cardiogeriatrics, emphasizing shared mechanisms such as chronic low-grade inflammation (inflammaging), hormonal dysregulation, oxidative stress, and physical inactivity. Despite advancements in diagnostic frameworks, such as the EWGSOP2 and AWGS definitions, variability in criteria and assessment methods continues to challenge standardization.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Wearable and Gait Assessment Research (WAGAR) Group, Prince of Wales Private Hospital, Randwick, NSW 2031, Australia.
Introduction: Gait analysis is a vital tool in the assessment of human movement and has been widely used in clinical settings to identify potential abnormalities in individuals. However, there is a lack of consensus on the normative values for gait metrics in large populations. The primary objective of this study is to establish a normative database of spatiotemporal gait metrics across various age groups, contributing to a broader understanding of human gait dynamics.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Centre for Automation and Robotics (CAR UPM-CSIC), Escuela Técnica Superior de Ingeniería y Diseño Industrial (ETSIDI), Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012 Madrid, Spain.
Analysis of the human gait represents a fundamental area of investigation within the broader domains of biomechanics, clinical research, and numerous other interdisciplinary fields. The progression of visual sensor technology and machine learning algorithms has enabled substantial developments in the creation of human gait analysis systems. This paper presents a comprehensive review of the advancements and recent findings in the field of vision-based human gait analysis systems over the past five years, with a special emphasis on the role of vision sensors, machine learning algorithms, and technological innovations.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electrical and Information Engineering, Kiel University, 24143 Kiel, Germany.
Clinical motion analysis plays an important role in the diagnosis and treatment of mobility-limiting diseases. Within this assessment, relative (point-to-point) tracking of extremities could benefit from increased accuracy. Given the limitations of current wearable sensor technology, supplementary spatial data such as distance estimates could provide added value.
View Article and Find Full Text PDFSensors (Basel)
January 2025
College of Sport and Health Science, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan.
This study aimed to assess the intraday reliability of markerless gait analysis using an RGB-D camera versus a traditional three-dimensional motion analysis (3DMA) system with and without a simulated walking assistant. Gait assessments were conducted on 20 healthy adults walking on a treadmill with a focus on spatiotemporal parameters gathered using the RGB-D camera and 3DMA system. The intraday reliability of the RGB-D camera was evaluated using intraclass correlation coefficients (ICC 1, 1), while its consistency with the 3DMA system was determined using ICC (2, 1).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!