A hybrid deep forest-based method for predicting synergistic drug combinations.

Cell Rep Methods

Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.

Published: February 2023

Combination therapy is a promising approach in treating multiple complex diseases. However, the large search space of available drug combinations exacerbates challenge for experimental screening. To predict synergistic drug combinations in different cancer cell lines, we propose an improved deep forest-based method, ForSyn, and design two forest types embedded in ForSyn. ForSyn handles imbalanced and high-dimensional data in medium-/small-scale datasets, which are inherent characteristics of drug combination datasets. Compared with 12 state-of-the-art methods, ForSyn ranks first on four metrics for eight datasets with different feature combinations. We conduct a systematic analysis to identify the most appropriate configuration parameters. We validate the predictive value of ForSyn with cell-based experiments on several previously unexplored drug combinations. Finally, a systematic analysis of feature importance is performed on the top contributing features extracted by ForSyn. The resulting key genes may play key roles on corresponding cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10014304PMC
http://dx.doi.org/10.1016/j.crmeth.2023.100411DOI Listing

Publication Analysis

Top Keywords

drug combinations
16
deep forest-based
8
forest-based method
8
synergistic drug
8
systematic analysis
8
forsyn
6
drug
5
combinations
5
hybrid deep
4
method predicting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!