The human brain is the most complex structure generated during development. Unveiling the ontogenesis and the intrinsic organization of specific neural networks may represent a key to understanding the physio-pathological aspects of different brain areas. The cortico-thalamic and thalamo-cortical (CT-TC) circuits process and modulate essential tasks such as wakefulness, sleep and memory, and their alterations may result in neurodevelopmental and psychiatric disorders. These pathologies are reported to affect specific neural populations but may also broadly alter physiological connections and thus dysregulate brain network generation, communication, and function. More specifically, the CT-TC system is reported to be severely affected in disorders impacting superior brain functions, such as schizophrenia (SCZ), bipolar disorder, autism spectrum disorders or epilepsy. In this review, the focus will be on CT development, and the models exploited to uncover and comprehend its molecular and cellular mechanisms. In parallel to animal models, still fundamental to unveil human neural network establishment, advanced platforms, such as brain organoids derived from human pluripotent stem cells, will be discussed. Indeed, organoids and assembloids represent unique tools to study and accelerate fundamental research in CT development and its dysfunctions. We will then discuss recent cutting-edge contributions, including approaches, concerning ontogenesis, specification, and function of the CT-TC circuitry that generates connectivity maps in physiological and pathological conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10019505PMC
http://dx.doi.org/10.3389/fnana.2023.1130797DOI Listing

Publication Analysis

Top Keywords

specific neural
8
function ct-tc
8
brain
5
cortico-thalamic development
4
development disease
4
disease cells
4
cells circuits
4
circuits schizophrenia
4
schizophrenia human
4
human brain
4

Similar Publications

Introduction: To interact with the environment, it is crucial to distinguish between sensory information that is externally generated and inputs that are self-generated. The sensory consequences of one's own movements tend to induce attenuated behavioral- and neural responses compared to externally generated inputs. We propose a computational model of sensory attenuation (SA) based on Bayesian Causal Inference, where SA occurs when an internal cause for sensory information is inferred.

View Article and Find Full Text PDF

Successful resolution of approach-avoidance conflict (AAC) is fundamentally important for survival, and its dysregulation is a hallmark of many neuropsychiatric disorders, and yet the underlying neural circuit mechanisms are not well elucidated. Converging human and animal research has implicated the anterior/ventral hippocampus (vHPC) as a key node in arbitrating AAC in a region-specific manner. In this study, we sought to target the vHPC CA1 projection pathway to the nucleus accumbens (NAc) to delineate its contribution to AAC decision-making, particularly in the arbitration of learned reward and punishment signals, as well as innate signals.

View Article and Find Full Text PDF

Petroleum hydrocarbon pollution causes significant damage to soil, so accurate prediction and early intervention are crucial for sustainable soil management. However, traditional soil analysis methods often rely on statistical methods, which means they always rely on specific assumptions and are sensitive to outliers. Existing machine learning based methods convert features containing spatial information into one-dimensional vectors, resulting in the loss of some spatial features of the data.

View Article and Find Full Text PDF

The TRIM-NHL RNA-binding protein MEI-P26 modulates the size of Drosophila Type I neuroblast lineages.

Genetics

January 2025

Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1.

The Drosophila TRIM-NHL RNA-binding protein (RBP), MEI-P26, has previously been shown to suppress tumor formation in the germline. Here we show that, in the Drosophila larval central brain, cell-type specific expression of MEI-P26 plays a vital role in regulating neural development. MEI-P26 and another TRIM-NHL RBP, Brain tumor (BRAT), have distinct expression patterns in Type I neuroblast (NB) lineages: While both proteins are expressed in NBs, BRAT is expressed in ganglion mother cells (GMCs) but not neurons whereas MEI-P26 is expressed in neurons but not GMCs.

View Article and Find Full Text PDF

Techniques that enable precise manipulations of subsets of neurons in the fly central nervous system (CNS) have greatly facilitated our understanding of the neural basis of behavior. Split-GAL4 driver lines allow specific targeting of cell types in and other species. We describe here a collection of 3060 lines targeting a range of cell types in the adult CNS and 1373 lines characterized in third-instar larvae.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!