Reversible Photocontrol of Microtubule Stability by Spiropyran-Conjugated Tau-Derived Peptides.

Chembiochem

Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama-Minami 4-101, Tottori, 680-8552, Japan.

Published: April 2023

Spatiotemporal modulation of microtubules by light has become an important aspect of the biological and nanotechnological applications of microtubules. We previously developed a Tau-derived peptide as a binding unit to the inside of microtubules. Here, we conjugated the Tau-derived peptide to spiropyran, which is reversibly converted to merocyanine by light, as a reversible photocontrol system to stabilize microtubules. Among the synthesized peptides with spiropyran/merocyanine at different positions, several peptides were bound to the inside of microtubules and stabilized the structures of microtubules. The peptide with spiropyran at the N-terminus induced polymerization and stabilization of microtubules, whereas the same peptide with the merocyanine form did not exert these effects. Reversible formation of microtubules/tubulin aggregates was achieved using the peptide with spiropyran conjugated at the N-terminus and irradiation with UV and visible light. Spiropyran-conjugated Tau-derived peptides would be useful for spatiotemporal modulation of microtubule stability through reversible photocontrol of binding.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.202200782DOI Listing

Publication Analysis

Top Keywords

reversible photocontrol
12
peptide spiropyran
12
microtubule stability
8
spiropyran-conjugated tau-derived
8
tau-derived peptides
8
peptides spatiotemporal
8
spatiotemporal modulation
8
tau-derived peptide
8
inside microtubules
8
microtubules peptide
8

Similar Publications

For the development of new functional materials for various applications, such as drug or gene delivery and environmental remediation, the relationship between function and morphology has been considered an important aspect for controlling affinity to the targets. However, there are only a few reports on this relationship because the molecular strategy for the precise control of vesicle shape has been restricted. Herein, we report the photocontrol of vesicle shape using azobenzene-containing amphiphilic switches.

View Article and Find Full Text PDF

Photo-Controllable Förster Resonance Energy Transfer Based on Dynamic Chiral Self-Assembly of Sequence-Defined Amphiphilic Alternating Azopeptoids.

Small

January 2025

Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.

Endowing biomimetic sequence-controlled polymers with chiral functionality to construct stimuli-responsive chiral materials offers a promising approach for innovative chiroptical switch, but it remains challenging. Herein, it is reported that the self-assembly of sequence-defined chiral amphiphilic alternating azopeptoids to generate photo-responsive and ultrathin bilayer peptoidosomes with a vesicular thickness of ≈1.50 nm and a diameter of around ≈290 nm.

View Article and Find Full Text PDF

Mimicking the superstructures and properties of spherical biological encapsulants such as viral capsids and ferritin offers viable pathways to understand their chiral assemblies and functional roles in living systems. However, stereospecific assembly of artificial polyhedra with mechanical properties and guest-binding attributes akin to biological encapsulants remains a formidable challenge. Here we report the stereospecific assembly of dynamic supramolecular snub cubes from 12 helical macrocycles, which are held together by 144 weak C-H hydrogen bonds.

View Article and Find Full Text PDF

Low-molecular-weight compounds of certain structural features may form coacervates through liquid-liquid phase separation (LLPS). These coacervates can enter mammalian cells and affect cellular physiology. Controlling the properties of the coacervates inside cells, however, is a challenge.

View Article and Find Full Text PDF

Harnessing Defects in SnSe Film via Photo-Induced Doping for Fully Light-Controlled Artificial Synapse.

Adv Mater

December 2024

State Key Laboratory of Silicon and Advanced Semiconductor Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China.

2D-layered materials are recognized as up-and-coming candidates to overcome the intrinsic physical limitation of silicon-based devices. Herein, the coexistence of positive persistent photoconductivity (PPPC) and negative persistent photoconductivity (NPPC) in SnSe thin films prepared by pulsed laser deposition provides an excellent avenue for engineering novel devices. It is determined that surface oxygen is co-regulated by physisorption and chemisorption, and the NPPC is attributed to the photo-controllable oxygen desorption behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!