Developing smartphone technology for point-of-care diagnosis is one of the current favorable trends in the field of biosensors. In fact, using smartphones can provide better accessibility and facility for rapid diagnosis of diseases. On the other hand, the detection of circulating tumor cells (CTCs) is one of the recent methods for the early diagnosis of cancer. Here, a new smartphone-assisted lab-in-a-tube device is introduced for the detection of Mucin 1 (MUC1) overexpressed tumor-derived cell lines using gold nanoclusters (GNCs)-based aptasensor. Accordingly, commercial polyurethane (PU) foam was first coated with graphene oxide (GO) to increase its surface area (8.45-fold), and improve its wettability. The surface of the resulting three-dimensional PU-GO (3DPU-GO) platform was then modified by MUC1 aptamer-GNCs to provide the required sensitivity and specificity through a turn "on/off" detection system. The proposed biosensor was first optimized with a spectrophotometer method. Afterward, findings were evaluated based on the red color intensity of the lab-in-a-tube system; and indicated the high ability of the biosensor for detection of MUC1-overexpressed tumor cell lines in the range of 250-20,000 cells mL with a limit of detection of 221 cells mL. In addition, the developed biosensor showed a decent selectivity against positive-control cell lines (MCF-7, and HT-29) in comparison to negative-control cell lines (HEK293, and L929). Notably, the results represented good accordance with reference methods including spectroscopy devices. Ultimately, the results of this work bring a new perspective to the field of point-of-care detection and can be considered in future biosensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2023.341017 | DOI Listing |
Drug Dev Res
February 2025
Graduate School, Fujian University of Traditional Chinese Medicine, Fuzhou City, People's Republic of China.
Naringenin has the potential to regulate ferroptosis and mitigate renal damage in diabetic nephropathy (DN). However, it remains unclear whether the naringenin's effects in DN are linked to its ability to regulate ferroptosis. This study investigated the potential anti-ferroptosis properties of naringenin in high glucose (HG)-induced renal tubular epithelial cell models.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.
Mitochondrial ribosomal protein S23 (MRPS23), encoded by a nuclear gene, is a well-known driver of proliferation in cancer. It participates in mitochondrial protein translation, and its expression association has been explored in many types of cancer. However, MRPS23 expression associations are rarely reported in breast cancer (BC).
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Istanbul University, Faculty of Science, Department of Biology, Istanbul, Türkiye.
In this study, the effects of histone deacetylase inhibitor CI-994 and nanotechnological drug liposomal cisplatin LipoPlatin on Luminal A breast cancer and triple-negative breast cancer were explored using agents alone and in combination. MCF-7 and MDA-MB-231 cell lines were used. Cell viability, and cell index values obtained from xCELLigence System, MI, BrdU LI and AI were evaluated in experiments.
View Article and Find Full Text PDFJ Liposome Res
January 2025
Samarth Biorigins LLP, KIADB Industrial Area, Tumkur, India.
Background: Lactoferrin (Lf), a multifunctional glycoprotein known for its roles in immune modulation, iron metabolism, and antimicrobial activity, has limited therapeutic efficacy due to poor bioavailability. Liposomal encapsulation of lactoferrin (LLf) offers a potential solution by improving its stability, absorption, and sustained release, making it a promising candidate for various clinical applications. This study aims to compare the effectiveness of LLf and plain Lf in cellular uptake, proliferation, and wound healing using HEK-293T and Caco-2 cell lines.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Medical Biology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey.
Chemotherapy is a potent tool against cancer, but drug resistance remains a major obstacle. To combat this, understanding the molecular mechanisms behind resistance in cancer cells and the protein expression changes driving these mechanisms is crucial. Targeting the Ubiquitin-Proteasome System (UPS) has proven effective in treating multiple myeloma and shows promise for solid tumours.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!