A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microplastic distribution and characteristics across a large river basin: Insights from the Neuse River in North Carolina, USA. | LitMetric

While microplastics (MP) have been found in aquatic ecosystems around the world, the understanding of drivers and controls of their occurrence and distribution have yet to be determined. In particular, their fate and transport in river catchments and networks are still poorly understood. We identified MP concentrations in water and streambed sediment at fifteen locations across the Neuse River Basin in North Carolina, USA. Water samples were collected with two different mesh sizes, a trawl net (>335 μm) and a 64 μm sieve used to filter bailing water samples. MPs >335 μm were found in all the water samples with concentrations ranging from 0.02 to 221 particles per m (p m) with a median of 0.44 p m. The highest concentrations were observed in urban streams and there was a significant correlation between streamflow and MP concentration in the most urbanized locations. Fourier Transform Infrared (FTIR) analysis indicated that for MPs >335 μm the three most common polymer types were polyethylene, polypropylene, and polystyrene. There were substantially more MP particles observed when samples were analyzed using a smaller mesh size (>64 μm), with concentrations ranging from 20 to 130 p m and the most common polymer type being polyethylene terephthalate as identified by Raman spectroscopy. The ratio of MP concentrations (64 μm to 335 μm) ranged from 35 to 375, indicating the 335 μm mesh substantially underestimates MPs relative to the 64 μm mesh. MPs were detected in 14/15 sediment samples. Sediment and water column concentrations were not correlated. We estimate MP (>64 μm) loading from the Neuse River watershed to be 230 billion particles per year. The findings of this study help to better understand how MPs are spatially distributed and transported through a river basin and how MP concentrations are impacted by land cover, hydrology, and sampling method.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.162940DOI Listing

Publication Analysis

Top Keywords

river basin
12
neuse river
12
water samples
12
north carolina
8
carolina usa
8
mps >335 μm
8
concentrations ranging
8
common polymer
8
concentrations
7
river
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!