Removal of aflatoxin is an urgent issue in agricultural products. A porous graphitic carbon nitride/graphene oxide hydrogel microsphere (CN/GO/SA) was synthesized and used to degrade AFB in peanut oil. CN/GO/SA was characterized by scanning electron micrograph (SEM), X-ray diffraction (XRD) and FT-IR. The introduction of GO significantly improved the adsorption capacity and visible light activity of photocatalysts. About 98.4% AFB in peanut oil was removed by 20% CN/GO/SA under visible light for 120 min. ‧O and h were the main active species during photoreaction, and five degradation products were identified by UPLC-Q-Orbitrap MS analysis. At the same time, the quality of treated peanut oil was still acceptable. More importantly, CN/GO/SA showed excellent cycle stability, and the degradation rate of AFB in peanut oil remained above 95% after five-time recycling. This work provides a practical way for developing efficient and sustainable photocatalysts to degrade mycotoxins in edible oil.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2023.135964 | DOI Listing |
Transl Androl Urol
December 2024
Department of Pathology, Pediatric and Perinatal Pathology, University of Miami Miller School of Medicine, Miami, FL, USA.
Background: Anabolic-androgenic steroids (AAS) are synthetic derivatives of testosterone. Sustanon, dissolved in peanut oil, is an AAS used by athletes to build muscle mass. This study aims to examine the effects of Sustanon on male reproductive health.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Science and Technology Branch, Pacific Environmental Science Centre, Environment and Climate Change Canada, Pacific and Yukon Laboratory for Environmental Testing, North Vancouver, BC, Canada.
Spilled plant-based oils behave very differently in comparison to petroleum oils and require different clean-up measures. They do not evaporate, disperse, dissolve, or emulsify to a significant degree but can polymerize and form an impermeable cap on sediment, smothering benthic media and resulting in an immediate impact on the wildlife community. The current study explored the application of rapid up-to-date direct analysis in real time (DART) with high-resolution mass spectrometry for plant-based oil typing.
View Article and Find Full Text PDFJ Food Sci
January 2025
Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding, Ministry of Agriculture and Rural Affairs, Qingdao, PR China.
Compared to traditional preservatives, photodynamic inactivation (PDI) offers a promising bactericidal approach due to its nontoxic nature and low propensity for microbial resistance. In this paper, we initially investigate the principles and antibacterial mechanisms underlying PDI. We then review factors influencing PDI's germicidal efficacy in food preservation.
View Article and Find Full Text PDFFood Chem
January 2025
Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou, Guangdong Province 510640, China. Electronic address:
Peanut seeds are enriched with protein and fatty acids, making them susceptible to infection by Aspergillus flavus (A. flavus). The infected seeds are harmful to human health due to the aflatoxin contamination.
View Article and Find Full Text PDFFood Chem
December 2024
Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, PR China; Weifang Institute of food science and processing technology, Weifang 261000, PR China. Electronic address:
The practice of deep-frying introduces various health concerns. Assessing the quality of frying oil is paramount. This study employs three-dimensional fluorescence spectroscopy to evaluate the peroxide value of vegetable oils after varying frying times.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!