A solid-contact ion-selective electrode (SC-ISE) based on a covalent organic framework@reduced graphene oxide (rGO) composite is proposed. The composite can be synthesized through the polycondensation of 1,3,5-triformylphloroglucinol (TFP) and 2,6-diaminoanthraquinone (DAAQ) on the rGO nanosheets, which shows high capacitance and good redox-active properties. By applying Cd-ISE as a model, the electrode exhibits a Nernstian slope of 29.7 ± 0.4 mV/decade in the activity range of 1.0 × 10 - 7.9 × 10 M and the limit of detection is 6.8 × 10 M. Particularly, the electrode based on DAAQ-TFP@rGO exhibits a low potential drift of 1.2 ± 0.2 μV/h over 70 h due to the large capacitance of 2.0 mF. Moreover, the DAAQ-TFP@rGO-based Cd-ISE shows good reproducibility and the standard deviations of the standard potentials for single batch and batch-to-batch are 0.28 (n = 4) and 0.30 mV (n = 4), respectively. The developed SC-Cd-ISE is not disturbed by light or gas and no aqueous layer occurs between the sensing membrane and DAAQ-TFP@rGO layer. The DAAQ-TFP@rGO composite is highly promising for construction of calibration-free SC-ISEs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2023.124444 | DOI Listing |
J Bacteriol
January 2025
Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), Department of Microbiology and Biotechnology, University of Tübingen, Tübingen, Baden-Württemberg, Germany.
Unlabelled: is well adapted to survive and persist in the infected host, escaping the host's immune response. Since polyamines such as spermine, which are synthesized by infected macrophages, are able to inhibit the growth of , the pathogen needs strategies to cope with these toxic metabolites. The actinomycete , a close relative of makes use of a gamma-glutamylation pathway to functionally neutralize spermine.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
EaStCHEM School of Chemistry, University of St Andrews, St Andrews KY16 9ST, U.K.
Nanoparticles of highly porous metal-organic frameworks (MOFs) are some of the most exciting nanomaterials under development, with potential applications that range from biomedicine and catalysis to adsorption technologies. However, our synthetic methodologies to functionalize and manipulate MOF nanoparticles (NPs) are less well developed than they might be. Here we create MOF NPs derivatized with hydrazone units on their exterior, enabling chemospecific reversible dynamic covalent modification of structures on the external surface.
View Article and Find Full Text PDFRSC Adv
January 2025
Univ. Grenoble Alpes, CNRS, CERMAV 38000 Grenoble France
Supramolecular oleogels, in which low-molecular weight oleogelators self-assemble into various nanostructures through non-covalent interactions, have witnessed increasing research activity in various fields of science, including food, cosmetics or remediation of marine oil spills. Herein, we report a simple scalable and environmentally friendly carbohydrate-based oleogelator, namely, the sodium salt of ,'-dimethyl β- glucosyl barbiturate (GlcBMe) that self-assembles through sonication to induce the gelation of polar organic solvent and later of non-polar vegetable oils by cationic exchange with quaternary ammonium surfactants. Water-soluble GlcBMe was capable of forming self-assembled fibrillar network bridging insoluble particles in the oil by sonication in the presence of a small amount of water.
View Article and Find Full Text PDFNature
January 2025
Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
Carbon-hydrogen (C-H) bonds are the foundation of essentially every organic molecule, making them an ideal place to do chemical synthesis. The key challenge is achieving selectivity for one particular C(sp)-H bond. In recent years, metalloenzymes have been found to perform C(sp)-H bond functionalization.
View Article and Find Full Text PDFAnal Chim Acta
March 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China. Electronic address:
Background: Based on the low volatility and refractory nature of Tetracycline (TC), excessive use leads to its continuous accumulation in water environments, posing serious risks to the ecological environment and human health. Although a very limited number of nanomaterials capable of simultaneously detecting and removing TC have been fabricated, they generally exist issues associated with a single detection signal ("on" or "off") or low adsorption rates with low adsorption capacities. As a result, it is crucial to develop a reliable technique to achieve ratiometric detection as well as rapid and efficient removal of TC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!