Protective effects of an electrophilic metabolite of docosahexaenoic acid on UVB-induced oxidative cell death, dermatitis, and carcinogenesis.

Redox Biol

Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea; Cancer Research Institute, Seoul National University, Seoul, South Korea. Electronic address:

Published: June 2023

Docosahexaenoic acid (DHA), a representative omega-3 (ω-3) polyunsaturated fatty acids, undergoes metabolism to produce biologically active electrophilic species. 17-Oxo-DHA is one such reactive metabolite generated from DHA by cyclooxygenase-2 and dehydrogenase in activated macrophages. The present study was aimed to investigate the effects of 17-oxo-DHA on ultraviolet B (UVB)-induced oxidative stress, inflammation, and carcinogenesis in mouse skin. UVB-induced epidermal cell death was ameliorated by topically applied 17-oxo-DHA. Topical application of 17-oxo-DHA onto hairless mouse skin inhibited UVB-induced phosphorylation of the proinflammatory transcription factor, STAT3 on tyrosine 705 (Tyr705). The 17-oxo-DHA treatment also reduced the levels of oxidative stress markers, 4-hydroxynonenal-modified protein, malondialdehyde, and 8-oxo-2'-deoxyguanosine. The protective effects of 17-oxo-DHA against oxidative damage in UVB-irradiated mouse skin were associated with activation of Nrf2. 17-Oxo-DHA enhanced the engulfment of apoptotic JB6 cells by macrophages, which was related to the increased expression of the scavenger receptor CD36. The 17-oxo-DHA-mediated potentiation of efferocytic activity of macrophages was attenuated by the pharmacologic inhibition or knockout of Nrf2. The pretreatment with 17-oxo-DHA reduced the UVB-induced skin carcinogenesis and tumor angiogenesis. It was also confirmed that 17-oxo-DHA treatment significantly inhibited the phosphorylation of the Tyr705 residue of STAT3 and decreased the expression of its target proteins in cutaneous papilloma. In conclusion, 17-oxo-DHA protects against UVB-induced oxidative cell death, dermatitis, and carcinogenesis. These effects were associated with inhibition of STAT3-mediated proinflammatory signaling and also activation of Nrf2 with subsequent upregulation of antioxidant and anti-inflammatory gene expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10031545PMC
http://dx.doi.org/10.1016/j.redox.2023.102666DOI Listing

Publication Analysis

Top Keywords

uvb-induced oxidative
12
cell death
12
mouse skin
12
17-oxo-dha
10
protective effects
8
docosahexaenoic acid
8
oxidative cell
8
death dermatitis
8
dermatitis carcinogenesis
8
effects 17-oxo-dha
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!