Comparative analysis of electroretinogram with subdermal and invasive recording methods in mice.

Biochem Biophys Res Commun

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. Electronic address:

Published: May 2023

Electroretinogram (ERG) is the most common clinical and basic visual electrodiagnostic test, which has long been used to evaluate the retinal function through photic stimulation. Despite its wide application, there are still some pitfalls often neglected in ERG recording, such as the recording time point, active electrode location, and the animal strain. In this study, we systematically analyzed and compared the effects of multiple factors on ERG, which would provide an important reference for ERG detection by other investigators. ERG was recorded using the Celeris D430 rodent ERG testing system. The amplitudes and latencies of a wave, b wave and oscillatory potentials (OPs) recorded from different electrode locations (subdermal and invasive), different times of day (day time 8:00 to 13:00 and night time 18:00 to 23:00), bilateral eyes (left and right), and different mouse strains (C57 and CD1) were analyzed and compared. Our results revealed that ERG was affected by active electrode locations and difference between day and night, while OPs seemed not to be influenced. There was no significant difference in the amplitudes or latencies of ERG and OPs between left and right eyes, irrespective of measurements at day or night, or which method was used. Compared to C57 mice, both ERG and OP responses were significantly decreased in Brn3b mice, a model for retinal ganglion cell (RGC) loss. In addition, there were some non-negligible differences in visual responses between C57 and CD1 mouse strains. Our results suggest that the invasive procedure is a reliable method for evaluating the visual function including VEP, ERG and OP responses in mice. Moreover, these comparative analyses provide valuable references for future studies of mammalian visual electrophysiology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2023.03.029DOI Listing

Publication Analysis

Top Keywords

erg
10
subdermal invasive
8
active electrode
8
analyzed compared
8
amplitudes latencies
8
electrode locations
8
mouse strains
8
c57 cd1
8
day night
8
erg responses
8

Similar Publications

Costs of Overly Broad Recalls.

J Food Prot

January 2025

U.S. Food and Drug Administration, Office of the Commissioner, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA.

Overly broad recalls following an FDA advisory occur when the source of an outbreak is originally misidentified or cannot be promptly identified. In this situation, an entire product category might be recalled (e.g.

View Article and Find Full Text PDF

High-precision Ni isotope analyses of the differentiated andesitic meteorite Erg Chech 002 (EC 002), the oldest known crustal fragment of a planetesimal, show that short-lived Fe was present in the early solar system with an initial Fe/Fe ratio of (7.71 ± 0.47) × 10, which is five times more precise than previous estimates and is proposed to be the reference value for further studies.

View Article and Find Full Text PDF

Retinopathy of prematurity (ROP) and diabetic retinopathy (DR) are ocular disorders in which a loss of retinal vasculature leads to ischemia followed by a compensatory neovascularization response. In mice, this is modeled using oxygen-induced retinopathy (OIR), whereby neonatal animals are transiently housed under hyperoxic conditions that result in central retina vessel regression and subsequent neovascularization. Using endothelial cell (EC)-specific gene deletion, we found that loss of two ETS-family transcription factors, ERG and FLI1, led to regression of OIR-induced neovascular vessels but failed to improve visual function, suggesting that relevant retinal damage occurs prior to and independently of neovascularization.

View Article and Find Full Text PDF

Introduction: Due to the recent advent of gene-targeted retinal therapies, the clinical value of high-yield genetic testing for inherited retinal dystrophies (IRDs) has increased considerably. However, diagnostic yield is limited by the reported patient populations in allele frequency databases. This study aimed to determine the effect of race and ethnicity on diagnostic yield in IRDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!