The regulation of adipose deposition in broiler chickens is an important factor for production efficiency to poultry producers and health concerns to customers. Although vitamin A and its metabolite [all-trans retinoic acid (atRA)] have been used for studies on adipogenesis in mammals and avian, effects of embryonic atRA on adipose development in embryonic (E) and posthatch (D) ages in broiler chickens have not been studied yet. Different concentrations of atRA (0 M-2 μM) were injected in broiler eggs at E10, and adipose tissues were sampled at E16. Percentages of adipose tissues in chicken embryos were significantly increased in the group injected with 500 nM of atRA compared to the 0 M group (P < 0.05). In addition, the adipocyte cross-sectional area (CSA) was significantly greater by in ovo injection of 500 nM atRA compared to the injection of 0 M (P < 0.01). Moreover, in ovo atRA-injected embryos were hatched and BWs were measured at D0, D7, and D14. BWs were not different from those of the 0 M group. Percentages of adipose tissues and CSA of the in ovo atRA-injected group (500 nM) were not different from those of the 0 M group at D14. Taken together, the current study clearly showed that in ovo injection of atRA promoted adipose deposition with hypertrophy during embryonic development, but its effects were not maintained in early posthatch age in broiler chickens, implying that embryonic atRA has an important role in the regulation of adipose development in chicken embryos.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.animal.2023.100750 | DOI Listing |
Front Nutr
December 2024
School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong, China.
Introduction: The objective of this study was to improve the economic value of the processed by-products of farmed miiuy croaker () by evaluating the nutrient composition and osteogenic activity of its bones. We prepared bone peptides (MMBP) and analyzed their osteogenic potential.
Methods: We assessed the osteogenic activity of MMBP by molecular docking, MC3T3-E1 cell proliferation assay and zebrafish growth model, and evaluated its effect on osteoporosis (OP) using a retinoic acid-induced osteoporosis rat model.
Medicine (Baltimore)
November 2024
Clinical laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China.
This study analyzes the laboratory characteristics and prognosis of patients between PML-RARα negative APL and PML-RARα positive APL and compares the differences in order to improve the understanding of this rare APL and guide clinical diagnosis and treatment. A total of 81 patients with newly diagnosed APL based on bone marrow cell morphology were included, with 14 in the PML-RARα gene negative group and 67 in the PML-RARα gene positive group. The sex, age, peripheral blood routine test, coagulation related indicators, bone marrow cell morphology, flow cytometric immunophenotype, abnormal chromosome expression and prognosis of the 2 groups were analyzed and compared.
View Article and Find Full Text PDFBioorg Med Chem
January 2025
School of Mathematical and Natural Sciences, New College of Interdisciplinary Arts and Sciences, Arizona State University, 4701 W. Thunderbird Road, Glendale, AZ 85308, USA. Electronic address:
Six pyridine analogs of (E)-3-(3-(1,2,3,4-tetrahydro-1,1,4,4,6-pentamethylnaphthalen-7-yl)-4-hydroxyphenyl)acrylic acid-or CD3254 (11)-in addition to two novel analogs of 1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-1H-benzo[d][1,2,3]triazole-5-carboxylic acid (CBt-PMN or 23) were prepared and evaluated for selective retinoid-X-receptor (RXR) agonism alongside bexarotene (1), an FDA-approved drug for cutaneous T-cell lymphoma (CTCL). Treatment with 1 often elicits side-effects by disrupting or provoking other RXR-dependent nuclear receptors and cellular pathways. All analogs were assessed through modeling for their ability to bind RXR and then evaluated in human colon and kidney cells employing an RXR-RXR mammalian-2-hybrid (M2H) system and in an RXRE-controlled transcriptional assay.
View Article and Find Full Text PDFBioorg Med Chem
January 2025
State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China. Electronic address:
Vitamin A and its primary active derivative, all-trans retinoic acid (RA), are endogenous signaling molecules essential for numerous biological processes, including cell proliferation, differentiation, and immune modulation. Owing to its differentiation-inducing effect, RA was the first differentiating agent approved for the clinical treatment of acute myeloid leukemia. While the classical mechanisms of RA signaling involve nuclear receptors, such as retinoic acid receptors (RARs), emerging evidence suggests that RA also engages in non-covalent and covalent interactions with a broader range of proteins.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Department of Biology, École Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France.
Acute Promyelocytic Leukaemia (APL) arises from an aberrant chromosomal translocation involving the Retinoic Acid Receptor Alpha (RARA) gene, predominantly with the Promyelocytic Leukaemia (PML) or Promyelocytic Leukaemia Zinc Finger (PLZF) genes. The resulting oncoproteins block the haematopoietic differentiation program promoting aberrant proliferative promyelocytes. Retinoic Acid (RA) therapy is successful in most of the PML::RARA patients, while PLZF::RARA patients frequently become resistant and relapse.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!