For decades, the Wind Chill Temperature Index (WCT) and its various iterations have been used to assess the risk of frostbite on unclothed body parts. This paper presents an innovative knowledge-based Cold Weather Ensemble Decision Aid (CoWEDA) that can be used to guide the selection of the most appropriate cold weather ensemble(s) relative to anticipated mission physical activities and environmental conditions. CoWEDA consists of a validated six-cylinder thermoregulatory model, a database of clothing properties, algorithms for calculating the whole ensemble properties from individual garments and a graphical user interface. The user-friendly CoWEDA allows users to select from an inventory of clothing items to build an ensemble suitable for their needs. CoWEDA predicts the risks of both frostbite and hypothermia and ensures that a selected clothing ensemble will provide adequate protection to prevent cold injury. CoWEDA predictions provide not only estimates of frostbite risk similar to WCT tables but also hypothermia times and clothing required to prevent cold injuries. In addition, a CoWEDA model variant can predict survivability and clothing requirements during cold water immersion. Thus, CoWEDA represents a significant enhancement of the WCT-based guidance for cold weather safety and survival by providing greater individual fidelity in cold injury predictions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10026739PMC
http://dx.doi.org/10.1080/22423982.2023.2190485DOI Listing

Publication Analysis

Top Keywords

cold weather
12
cold
8
guidance cold
8
thermoregulatory model
8
prevent cold
8
cold injury
8
coweda
7
clothing
5
development interactive
4
interactive guidance
4

Similar Publications

Over 80% of biologic drugs, and 90% of vaccines, require temperature-controlled conditions throughout the supply chain to minimize thermal inactivation and contamination. This cold chain is costly, requires stringent oversight, and is impractical in remote environments. Here, we report chemical dispersants that non-covalently solvate proteins within fluorous liquids to alter their thermodynamic equilibrium and reduce conformational flexibility.

View Article and Find Full Text PDF

Convergent evolution of type I antifreeze proteins from four different progenitors in response to global cooling.

BMC Mol Cell Biol

December 2024

Department of Biomedical and Molecular Sciences, Queen's University, Botterell Hall, 18 Stuart Street, Kingston, K7L 3N6, Canada.

Alanine-rich, alpha-helical type I antifreeze proteins (AFPs) in fishes are thought to have arisen independently in the last 30 Ma on at least four occasions. This hypothesis has recently been proven for flounder and sculpin AFPs, which both originated by gene duplication and divergence followed by substantial gene copy number expansion. Here, we examined the origins of the cunner (wrasse) and snailfish (liparid) AFPs.

View Article and Find Full Text PDF

Climate change represents an unprecedented global public health crisis with extensive and profound implications. The Lancet Commission identified it as the foremost health challenge of the 21st century. In 2015, air pollution alone caused approximately 9 million premature deaths worldwide.

View Article and Find Full Text PDF

Red, known as Huangjing in Chinese, is a perennial plant valued in traditional Chinese medicine and is a nutritional food ingredient. With increasing market demand outpacing wild resource availability, cultivation has become essential for sustainable production. However, the cultivation of is challenged by the double dormancy characteristics of seeds, which include embryo and physiological dormancy.

View Article and Find Full Text PDF

Moving bed biofilm reactors can purify urban domestic sewage through microbial biodegradation. High-throughput sequencing was used to study the response mechanism of the biofilm microbial community to temperature. The effluent quality of the reactor declined with the decrease in temperature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!