Background: Introgression of the bacterial endosymbiont Wolbachia into Aedes aegypti populations is a biocontrol approach being used to reduce arbovirus transmission. This requires mass release of Wolbachia-infected mosquitoes. While releases have been conducted using a variety of techniques, egg releases, using water-soluble capsules containing mosquito eggs and larval food, offer an attractive method due to its potential to reduce onsite resource requirements. However, optimisation of this approach is required to ensure there is no detrimental impact on mosquito fitness and to promote successful Wolbachia introgression.

Methods: We determined the impact of storage time and temperature on wild-type (WT) and Wolbachia-infected (wMel or wAlbB strains) Ae. aegypti eggs. Eggs were stored inside capsules over 8 weeks at 18 °C or 22 °C and hatch rate, emergence rate and Wolbachia density were determined. We next examined egg quality and Wolbachia density after exposing eggs to 4-40 °C to determine how eggs may be impacted if exposed to extreme temperatures during shipment.

Results: Encapsulating eggs for 8 weeks did not negatively impact egg viability or resulting adult emergence and Wolbachia density compared to controls. When eggs were exposed to temperatures within 4-36 °C for 48 h, their viability and resulting adult Wolbachia density were maintained; however, both were significantly reduced when exposed to 40 °C.

Conclusions: We describe the time and temperature limits for maintaining viability of Wolbachia-infected Ae. aegypti eggs when encapsulated or exposed to extreme temperatures. These findings could improve the efficiency of mass releases by providing transport and storage constraints to ensure only high-quality material is utilised during field releases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10024388PMC
http://dx.doi.org/10.1186/s13071-023-05724-1DOI Listing

Publication Analysis

Top Keywords

wolbachia density
16
time temperature
12
aegypti eggs
12
eggs
9
temperature limits
8
aedes aegypti
8
field releases
8
exposed extreme
8
extreme temperatures
8
viability adult
8

Similar Publications

Mosquito-borne diseases pose a significant threat to global health, and traditional mosquito control methods often fall short of effectiveness. A promising alternative is the biological control strategy of transinfecting mosquitoes with Wolbachia, a bacterium capable of outcompeting harmful pathogens and reducing the ability of mosquitoes to transmit diseases. However, Wolbachia infections are sensitive to abiotic environmental factors such as temperature and humidity, which can affect their densities in mosquitoes and, consequently, their ability to block pathogens.

View Article and Find Full Text PDF

The horizontal transmission of endosymbionts between hosts and parasitoids plays a crucial role in biological control, yet its mechanisms remain poorly understood. This study investigates the dynamics of horizontal transfer of (Ccep) from the rice moth, , to its parasitoid, . Through PCR detection and phylogenetic analysis, we demonstrated the presence of identical Ccep strains in both host and parasitoid populations, providing evidence for natural horizontal transmission.

View Article and Find Full Text PDF

Role of Vigilin and RACK1 in dengue virus- interactions.

mSphere

December 2024

Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia.

Vigilin is a large and evolutionary conserved RNA-binding protein (RBP), which can interact with RNA through its KH domain. Vigilin is, therefore, a multifunctional protein reported to be associated with RNA transport and metabolism, sterol metabolism, chromosome segregation, carcinogenesis, and heterochromatin-mediated gene silencing. The receptor for activated C kinase 1 (RACK1) is another highly conserved protein involved in many cellular pathways.

View Article and Find Full Text PDF

Counting rare endosymbionts using digital droplet PCR.

bioRxiv

December 2024

Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA.

is the most widespread animal-associated intracellular microbe, living within the cells of over half of insect species. Since they can suppress pathogen replication and spread rapidly through insect populations, is at the vanguard of public health initiatives to control mosquito-borne diseases. 's abilities to block pathogens and spread quickly are closely linked to their abundance in host tissues.

View Article and Find Full Text PDF

A potential role for the interaction of Wolbachia surface proteins with the Drosophila microtubulin in maintenance of endosymbiosis and affecting spermiogenesis.

J Insect Physiol

December 2024

School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, China. Electronic address:

Wolbachia, as a widely infected intracellular symbiotic bacterium in Arthropoda, is able to manipulate the reproduction of insect hosts for facilitating their own transmission. Cytoplasmic incompatibility (CI) is the most common phenotype that Wolbachia induced in insect hosts where they resulted in the failure of uninfected egg hatch when fertilized with the sperm derived from Wolbachia-infected males, suggesting that the sperm are modified by Wolbachia during spermatogenesis. Although the molecular mechanisms of CI are beginning to be understood, the effects of Wolbachia on the symbiotic relationship and the proper dynamics of spermatogenesis have not yet been fully investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!