Neuronal voltage changes which are dependent on chloride transporters and channels are involved in forming neural functions during early development and maintaining their stability until adulthood. The intracellular chloride concentration maintains a steady state, which is delicately regulated by various genes coding for chloride transporters and channels (GClTC) on the plasmalemma; however, the synergistic effect of these genes in central nervous system disorders remains unclear. In this study, we first defined 10 gene clusters with similar temporal expression patterns, and identified 41 GClTC related to brain developmental process. Then, we found 4 clusters containing 22 GClTC were enriched for the neuronal functions. The GClTC from different clusters presented distinct cell type preferences and anatomical heterogeneity. We also observed strong correlations between clustered genes and diseases, most of which were nervous system disorders. Finally, we found that one of the most well-known GClTC, SLC12A2, had a more profound effect on glial cell-related diseases than on neuron-related diseases, which was in accordance with our observation that SLC12A2 was mainly expressed in oligodendrocytes during brain development. Our findings provide a more comprehensive understanding of the temporal and spatial expression characteristics of GClTC, which can help us understand the complex roles of GClTC in the development of the healthy human brain and the etiology of brain disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10024392PMC
http://dx.doi.org/10.1186/s13041-023-01018-wDOI Listing

Publication Analysis

Top Keywords

chloride transporters
12
transporters channels
12
expression patterns
8
genes coding
8
nervous system
8
system disorders
8
gcltc
7
spatiotemporal expression
4
genes
4
patterns genes
4

Similar Publications

Salt stress disturbs plant growth and photosynthesis due to its toxicity. The ice plant Mesembryanthemum crystallinum is a highly salt-tolerant facultative crassulacean acid metabolism (CAM) plant. However, the genetic basis of the salt tolerance mechanisms in ice plants remains unclear.

View Article and Find Full Text PDF

Background: Pathogenic mutations in the CFTR gene disrupt the normal function of the chloride ion channel CFTR protein, resulting in Cystic Fibrosis (C.F.).

View Article and Find Full Text PDF

Bacopa monnieri Extract Diminish Hypoxia-Induced Anxiety by Regulating HIF-1α Signaling and Enhancing the Antioxidant Defense System in Hippocampus.

Neuromolecular Med

January 2025

Biochemistry and Molecular Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.

Hypoxia is a significant stressor, and stabilized hypoxia-inducible factor-1α (HIF-1α) regulates the expression of numerous genes, leading to various biochemical, molecular, physiological and genomic changes. The body's oxygen-sensing system activates gene expression to protect brain tissues from hypoxia. Gamma-aminobutyric acid, an inhibitory neurotransmitter, regulates brain excitability during hypoxia through the activation of HIF-1 α.

View Article and Find Full Text PDF

The degradation of concrete caused by sulfate attack poses a significant challenge to its durability. Using nanomaterials to enhance the mechanical and durability properties of concrete is a promising solution. A study of the durability of nano-alumina (NA)-modified concrete by sulfate erosion was carried out.

View Article and Find Full Text PDF

New aromatic co-polyamide-imides (coPAIs) containing both carboxyl and hydroxyl groups in the repeating units were synthesized for the first time. Transport, thermal and morphological properties of dense nonporous membranes from PAIs obtained using the diacid chloride of 2-(4-carboxyphenyl)-1,3-dioxoisoindoline-5-carboxylic acid and diamines 5,5'-methylene-bis (2-aminophenol)) and 3,5-Diaminobenzoic acid, taken in molar ratios of 7:3, 1:1, and 3:7, have been studied. High levels of membrane permeability accompanied by high selectivity for mixtures of liquids with significantly different polarities were determined by realization of intra- and intermolecular interactions in polymer, which was proved by thermal analyses and hydrodynamic characteristics of coPAIs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!