Emodin, a compound isolated from Aspergillus terreus, was studied using chromatographic and spectroscopic methods and compound purity (96%) was assessed by TLC. Furthermore, high larvicidal activity against Aedes aegypti-AeA (LC 6.156 and LC 12.450 mg/L), Culex quinquefasciatus-CuQ (8.216 and 14.816 mg/L), and Anopheles stephensi-AnS larvae (6.895 and 15.24 mg/L) was recorded. The first isolated fraction (emodin) showed higher pupicidal activity against AeA (15.449 and 20.752 mg/L). Most emodin-treated larvae (ETL) showed variations in acetylcholine esterase, α and β-carboxylesterases, and phosphatase activities in the 4 instar, indicating the intrinsic differences in their biochemical changes. ETL had numerous altered tissues, including muscle, gastric caeca, hindgut, midgut, nerve ganglia, and midgut epithelium. Acute toxicity of emodin on brine shrimp Artemia nauplii (54.0 and 84.5 mg/L) and the zebrafish Danio rerio (less toxicity observed) was recorded. In docking studies, Emodin interacted well with odorant-binding-proteins of AeA, AnS, and CuQ with docking scores of - 8.89, - 6.53, and - 8.09 kcal mol, respectively. Therefore, A. terreus is likely to be effective against mosquito larvicides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-26290-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!